MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dmmptss Structured version   Visualization version   GIF version

Theorem dmmptss 6248
Description: The domain of a mapping is a subset of its base class. (Contributed by Scott Fenton, 17-Jun-2013.)
Hypothesis
Ref Expression
dmmpt.1 𝐹 = (𝑥𝐴𝐵)
Assertion
Ref Expression
dmmptss dom 𝐹𝐴
Distinct variable group:   𝑥,𝐴
Allowed substitution hints:   𝐵(𝑥)   𝐹(𝑥)

Proof of Theorem dmmptss
StepHypRef Expression
1 dmmpt.1 . . 3 𝐹 = (𝑥𝐴𝐵)
21dmmpt 6247 . 2 dom 𝐹 = {𝑥𝐴𝐵 ∈ V}
32ssrab3 4078 1 dom 𝐹𝐴
Colors of variables: wff setvar class
Syntax hints:   = wceq 1533  wcel 2098  Vcvv 3471  wss 3947  cmpt 5233  dom cdm 5680
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2166  ax-ext 2698  ax-sep 5301  ax-nul 5308  ax-pr 5431
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 846  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2529  df-eu 2558  df-clab 2705  df-cleq 2719  df-clel 2805  df-nfc 2880  df-rab 3429  df-v 3473  df-dif 3950  df-un 3952  df-in 3954  df-ss 3964  df-nul 4325  df-if 4531  df-sn 4631  df-pr 4633  df-op 4637  df-br 5151  df-opab 5213  df-mpt 5234  df-xp 5686  df-rel 5687  df-cnv 5688  df-dm 5690  df-rn 5691  df-res 5692  df-ima 5693
This theorem is referenced by:  mptrcl  7017  fvmptss  7020  fvmptex  7022  fvmptnf  7030  elfvmptrab1w  7035  elfvmptrab1  7036  mptexg  7237  mptexw  7960  dmmpossx  8074  tposssxp  8240  mptfi  9381  cnvimamptfin  9383  cantnfres  9706  mptct  10567  arwrcl  18038  submgmrcl  18660  cntzrcl  19283  gsumconst  19894  psrass1lemOLD  21879  psrass1lem  21882  psrass1  21912  psrass23l  21915  psrcom  21916  psrass23  21917  mpfrcl  22036  psropprmul  22161  coe1mul2  22193  lmrcl  23153  1stcrestlem  23374  ptbasfi  23503  isxms2  24372  setsmstopn  24404  tngtopn  24585  rrxmval  25351  ulmss  26351  dchrrcl  27191  gsummpt2co  32780  locfinreflem  33446  sitgclg  33967  cvmsrcl  34879  snmlval  34946  gonan0  35007  bj-fvmptunsn1  36741  eldiophb  42180  elmnc  42563  itgocn  42591  dmmpossx2  47451
  Copyright terms: Public domain W3C validator
OSZAR »