MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  psrbagconcl Structured version   Visualization version   GIF version

Theorem psrbagconcl 21874
Description: The complement of a bag is a bag. (Contributed by Mario Carneiro, 29-Dec-2014.) Remove a sethood antecedent. (Revised by SN, 6-Aug-2024.)
Hypotheses
Ref Expression
psrbag.d 𝐷 = {𝑓 ∈ (ℕ0m 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin}
psrbagconf1o.s 𝑆 = {𝑦𝐷𝑦r𝐹}
Assertion
Ref Expression
psrbagconcl ((𝐹𝐷𝑋𝑆) → (𝐹f𝑋) ∈ 𝑆)
Distinct variable groups:   𝑓,𝐹   𝑓,𝐼   𝑦,𝐷   𝑦,𝐹   𝑓,𝑋   𝑦,𝑋
Allowed substitution hints:   𝐷(𝑓)   𝑆(𝑦,𝑓)   𝐼(𝑦)

Proof of Theorem psrbagconcl
StepHypRef Expression
1 simpl 481 . . 3 ((𝐹𝐷𝑋𝑆) → 𝐹𝐷)
2 simpr 483 . . . . . 6 ((𝐹𝐷𝑋𝑆) → 𝑋𝑆)
3 breq1 5155 . . . . . . 7 (𝑦 = 𝑋 → (𝑦r𝐹𝑋r𝐹))
4 psrbagconf1o.s . . . . . . 7 𝑆 = {𝑦𝐷𝑦r𝐹}
53, 4elrab2 3687 . . . . . 6 (𝑋𝑆 ↔ (𝑋𝐷𝑋r𝐹))
62, 5sylib 217 . . . . 5 ((𝐹𝐷𝑋𝑆) → (𝑋𝐷𝑋r𝐹))
76simpld 493 . . . 4 ((𝐹𝐷𝑋𝑆) → 𝑋𝐷)
8 psrbag.d . . . . 5 𝐷 = {𝑓 ∈ (ℕ0m 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin}
98psrbagf 21858 . . . 4 (𝑋𝐷𝑋:𝐼⟶ℕ0)
107, 9syl 17 . . 3 ((𝐹𝐷𝑋𝑆) → 𝑋:𝐼⟶ℕ0)
116simprd 494 . . 3 ((𝐹𝐷𝑋𝑆) → 𝑋r𝐹)
128psrbagcon 21870 . . 3 ((𝐹𝐷𝑋:𝐼⟶ℕ0𝑋r𝐹) → ((𝐹f𝑋) ∈ 𝐷 ∧ (𝐹f𝑋) ∘r𝐹))
131, 10, 11, 12syl3anc 1368 . 2 ((𝐹𝐷𝑋𝑆) → ((𝐹f𝑋) ∈ 𝐷 ∧ (𝐹f𝑋) ∘r𝐹))
14 breq1 5155 . . 3 (𝑦 = (𝐹f𝑋) → (𝑦r𝐹 ↔ (𝐹f𝑋) ∘r𝐹))
1514, 4elrab2 3687 . 2 ((𝐹f𝑋) ∈ 𝑆 ↔ ((𝐹f𝑋) ∈ 𝐷 ∧ (𝐹f𝑋) ∘r𝐹))
1613, 15sylibr 233 1 ((𝐹𝐷𝑋𝑆) → (𝐹f𝑋) ∈ 𝑆)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 394   = wceq 1533  wcel 2098  {crab 3430   class class class wbr 5152  ccnv 5681  cima 5685  wf 6549  (class class class)co 7426  f cof 7689  r cofr 7690  m cmap 8851  Fincfn 8970  cle 11287  cmin 11482  cn 12250  0cn0 12510
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2166  ax-ext 2699  ax-rep 5289  ax-sep 5303  ax-nul 5310  ax-pow 5369  ax-pr 5433  ax-un 7746  ax-cnex 11202  ax-resscn 11203  ax-1cn 11204  ax-icn 11205  ax-addcl 11206  ax-addrcl 11207  ax-mulcl 11208  ax-mulrcl 11209  ax-mulcom 11210  ax-addass 11211  ax-mulass 11212  ax-distr 11213  ax-i2m1 11214  ax-1ne0 11215  ax-1rid 11216  ax-rnegex 11217  ax-rrecex 11218  ax-cnre 11219  ax-pre-lttri 11220  ax-pre-lttrn 11221  ax-pre-ltadd 11222  ax-pre-mulgt0 11223
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 846  df-3or 1085  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2529  df-eu 2558  df-clab 2706  df-cleq 2720  df-clel 2806  df-nfc 2881  df-ne 2938  df-nel 3044  df-ral 3059  df-rex 3068  df-reu 3375  df-rab 3431  df-v 3475  df-sbc 3779  df-csb 3895  df-dif 3952  df-un 3954  df-in 3956  df-ss 3966  df-pss 3968  df-nul 4327  df-if 4533  df-pw 4608  df-sn 4633  df-pr 4635  df-op 4639  df-uni 4913  df-iun 5002  df-br 5153  df-opab 5215  df-mpt 5236  df-tr 5270  df-id 5580  df-eprel 5586  df-po 5594  df-so 5595  df-fr 5637  df-we 5639  df-xp 5688  df-rel 5689  df-cnv 5690  df-co 5691  df-dm 5692  df-rn 5693  df-res 5694  df-ima 5695  df-pred 6310  df-ord 6377  df-on 6378  df-lim 6379  df-suc 6380  df-iota 6505  df-fun 6555  df-fn 6556  df-f 6557  df-f1 6558  df-fo 6559  df-f1o 6560  df-fv 6561  df-riota 7382  df-ov 7429  df-oprab 7430  df-mpo 7431  df-of 7691  df-ofr 7692  df-om 7877  df-1st 7999  df-2nd 8000  df-supp 8172  df-frecs 8293  df-wrecs 8324  df-recs 8398  df-rdg 8437  df-1o 8493  df-er 8731  df-map 8853  df-en 8971  df-dom 8972  df-sdom 8973  df-fin 8974  df-pnf 11288  df-mnf 11289  df-xr 11290  df-ltxr 11291  df-le 11292  df-sub 11484  df-neg 11485  df-nn 12251  df-n0 12511
This theorem is referenced by:  psrbagconf1o  21877  psrass1lem  21884  psrdi  21915  psrdir  21916  psrass23l  21917  psrcom  21918  psrass23  21919  resspsrmul  21926  mplsubrglem  21953  mplmonmul  21981  mhpmulcl  22080  psdmul  22097  psropprmul  22163  mdegmullem  26034
  Copyright terms: Public domain W3C validator
OSZAR »