![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > nqex | Structured version Visualization version GIF version |
Description: The class of positive fractions exists. (Contributed by NM, 16-Aug-1995.) (Revised by Mario Carneiro, 27-Apr-2013.) (New usage is discouraged.) |
Ref | Expression |
---|---|
nqex | ⊢ Q ∈ V |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-nq 10935 | . 2 ⊢ Q = {𝑦 ∈ (N × N) ∣ ∀𝑥 ∈ (N × N)(𝑦 ~Q 𝑥 → ¬ (2nd ‘𝑥) <N (2nd ‘𝑦))} | |
2 | niex 10904 | . . 3 ⊢ N ∈ V | |
3 | 2, 2 | xpex 7754 | . 2 ⊢ (N × N) ∈ V |
4 | 1, 3 | rabex2 5336 | 1 ⊢ Q ∈ V |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ∈ wcel 2098 ∀wral 3051 Vcvv 3463 class class class wbr 5148 × cxp 5675 ‘cfv 6547 2nd c2nd 7991 Ncnpi 10867 <N clti 10870 ~Q ceq 10874 Qcnq 10875 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-ext 2696 ax-sep 5299 ax-nul 5306 ax-pow 5364 ax-pr 5428 ax-un 7739 ax-inf2 9664 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 846 df-3or 1085 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-sb 2060 df-clab 2703 df-cleq 2717 df-clel 2802 df-ne 2931 df-ral 3052 df-rex 3061 df-rab 3420 df-v 3465 df-dif 3948 df-un 3950 df-in 3952 df-ss 3962 df-pss 3965 df-nul 4324 df-if 4530 df-pw 4605 df-sn 4630 df-pr 4632 df-op 4636 df-uni 4909 df-br 5149 df-opab 5211 df-tr 5266 df-eprel 5581 df-po 5589 df-so 5590 df-fr 5632 df-we 5634 df-xp 5683 df-rel 5684 df-ord 6372 df-on 6373 df-lim 6374 df-suc 6375 df-om 7870 df-ni 10895 df-nq 10935 |
This theorem is referenced by: npex 11009 elnp 11010 genpv 11022 genpdm 11025 |
Copyright terms: Public domain | W3C validator |