![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > res0 | Structured version Visualization version GIF version |
Description: A restriction to the empty set is empty. (Contributed by NM, 12-Nov-1994.) |
Ref | Expression |
---|---|
res0 | ⊢ (𝐴 ↾ ∅) = ∅ |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-res 5694 | . 2 ⊢ (𝐴 ↾ ∅) = (𝐴 ∩ (∅ × V)) | |
2 | 0xp 5780 | . . 3 ⊢ (∅ × V) = ∅ | |
3 | 2 | ineq2i 4211 | . 2 ⊢ (𝐴 ∩ (∅ × V)) = (𝐴 ∩ ∅) |
4 | in0 4395 | . 2 ⊢ (𝐴 ∩ ∅) = ∅ | |
5 | 1, 3, 4 | 3eqtri 2760 | 1 ⊢ (𝐴 ↾ ∅) = ∅ |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1533 Vcvv 3473 ∩ cin 3948 ∅c0 4326 × cxp 5680 ↾ cres 5684 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-ext 2699 ax-sep 5303 ax-nul 5310 ax-pr 5433 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 846 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-sb 2060 df-clab 2706 df-cleq 2720 df-clel 2806 df-rab 3431 df-v 3475 df-dif 3952 df-un 3954 df-in 3956 df-ss 3966 df-nul 4327 df-if 4533 df-sn 4633 df-pr 4635 df-op 4639 df-opab 5215 df-xp 5688 df-res 5694 |
This theorem is referenced by: ima0 6085 resdisj 6178 dfpo2 6305 smo0 8385 tfrlem16 8420 tz7.44-1 8433 rdg0n 8461 mapunen 9177 fnfi 9212 ackbij2lem3 10272 hashf1lem1 14455 hashf1lem1OLD 14456 setsid 17184 join0 18404 meet0 18405 frmdplusg 18813 psgn0fv0 19473 gsum2dlem2 19933 ablfac1eulem 20036 ablfac1eu 20037 psrplusg 21888 ply1plusgfvi 22167 ptuncnv 23731 ptcmpfi 23737 ust0 24144 xrge0gsumle 24769 xrge0tsms 24770 jensen 26941 egrsubgr 29110 0grsubgr 29111 pthdlem1 29600 0pth 29955 1pthdlem1 29965 eupth2lemb 30067 fressupp 32489 resf1o 32533 xrge0tsmsd 32792 gsumle 32825 rprmdvdsprod 33273 zarcmplem 33515 esumsnf 33716 satfv1lem 35005 eldm3 35388 rdgprc0 35422 bj-rdg0gALT 36583 zrdivrng 37459 disjresin 37743 eldioph4b 42262 diophren 42264 ismeannd 45884 psmeasure 45888 isomennd 45948 hoidmvlelem3 46014 aacllem 48312 |
Copyright terms: Public domain | W3C validator |