Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  esumsnf Structured version   Visualization version   GIF version

Theorem esumsnf 33814
Description: The extended sum of a singleton is the term. (Contributed by Thierry Arnoux, 2-Jan-2017.) (Revised by Thierry Arnoux, 2-May-2020.)
Hypotheses
Ref Expression
esumsnf.0 𝑘𝐵
esumsnf.1 ((𝜑𝑘 = 𝑀) → 𝐴 = 𝐵)
esumsnf.2 (𝜑𝑀𝑉)
esumsnf.3 (𝜑𝐵 ∈ (0[,]+∞))
Assertion
Ref Expression
esumsnf (𝜑 → Σ*𝑘 ∈ {𝑀}𝐴 = 𝐵)
Distinct variable groups:   𝑘,𝑀   𝜑,𝑘
Allowed substitution hints:   𝐴(𝑘)   𝐵(𝑘)   𝑉(𝑘)

Proof of Theorem esumsnf
Dummy variables 𝑥 𝑙 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-esum 33778 . . 3 Σ*𝑘 ∈ {𝑀}𝐴 = ((ℝ*𝑠s (0[,]+∞)) tsums (𝑘 ∈ {𝑀} ↦ 𝐴))
21a1i 11 . 2 (𝜑 → Σ*𝑘 ∈ {𝑀}𝐴 = ((ℝ*𝑠s (0[,]+∞)) tsums (𝑘 ∈ {𝑀} ↦ 𝐴)))
3 eqid 2725 . . . 4 (ℝ*𝑠s (0[,]+∞)) = (ℝ*𝑠s (0[,]+∞))
4 snfi 9069 . . . . 5 {𝑀} ∈ Fin
54a1i 11 . . . 4 (𝜑 → {𝑀} ∈ Fin)
6 elsni 4647 . . . . . . . . 9 (𝑘 ∈ {𝑀} → 𝑘 = 𝑀)
7 esumsnf.1 . . . . . . . . 9 ((𝜑𝑘 = 𝑀) → 𝐴 = 𝐵)
86, 7sylan2 591 . . . . . . . 8 ((𝜑𝑘 ∈ {𝑀}) → 𝐴 = 𝐵)
98mpteq2dva 5249 . . . . . . 7 (𝜑 → (𝑘 ∈ {𝑀} ↦ 𝐴) = (𝑘 ∈ {𝑀} ↦ 𝐵))
10 esumsnf.2 . . . . . . . 8 (𝜑𝑀𝑉)
11 esumsnf.3 . . . . . . . 8 (𝜑𝐵 ∈ (0[,]+∞))
12 fmptsn 7176 . . . . . . . . 9 ((𝑀𝑉𝐵 ∈ (0[,]+∞)) → {⟨𝑀, 𝐵⟩} = (𝑙 ∈ {𝑀} ↦ 𝐵))
13 nfcv 2891 . . . . . . . . . 10 𝑙𝐵
14 esumsnf.0 . . . . . . . . . 10 𝑘𝐵
15 eqidd 2726 . . . . . . . . . 10 (𝑘 = 𝑙𝐵 = 𝐵)
1613, 14, 15cbvmpt 5260 . . . . . . . . 9 (𝑘 ∈ {𝑀} ↦ 𝐵) = (𝑙 ∈ {𝑀} ↦ 𝐵)
1712, 16eqtr4di 2783 . . . . . . . 8 ((𝑀𝑉𝐵 ∈ (0[,]+∞)) → {⟨𝑀, 𝐵⟩} = (𝑘 ∈ {𝑀} ↦ 𝐵))
1810, 11, 17syl2anc 582 . . . . . . 7 (𝜑 → {⟨𝑀, 𝐵⟩} = (𝑘 ∈ {𝑀} ↦ 𝐵))
199, 18eqtr4d 2768 . . . . . 6 (𝜑 → (𝑘 ∈ {𝑀} ↦ 𝐴) = {⟨𝑀, 𝐵⟩})
20 fsng 7146 . . . . . . 7 ((𝑀𝑉𝐵 ∈ (0[,]+∞)) → ((𝑘 ∈ {𝑀} ↦ 𝐴):{𝑀}⟶{𝐵} ↔ (𝑘 ∈ {𝑀} ↦ 𝐴) = {⟨𝑀, 𝐵⟩}))
2110, 11, 20syl2anc 582 . . . . . 6 (𝜑 → ((𝑘 ∈ {𝑀} ↦ 𝐴):{𝑀}⟶{𝐵} ↔ (𝑘 ∈ {𝑀} ↦ 𝐴) = {⟨𝑀, 𝐵⟩}))
2219, 21mpbird 256 . . . . 5 (𝜑 → (𝑘 ∈ {𝑀} ↦ 𝐴):{𝑀}⟶{𝐵})
2311snssd 4814 . . . . 5 (𝜑 → {𝐵} ⊆ (0[,]+∞))
2422, 23fssd 6740 . . . 4 (𝜑 → (𝑘 ∈ {𝑀} ↦ 𝐴):{𝑀}⟶(0[,]+∞))
25 xrltso 13155 . . . . . . 7 < Or ℝ*
2625a1i 11 . . . . . 6 (𝜑 → < Or ℝ*)
27 0xr 11293 . . . . . . 7 0 ∈ ℝ*
2827a1i 11 . . . . . 6 (𝜑 → 0 ∈ ℝ*)
29 elxrge0 13469 . . . . . . . 8 (𝐵 ∈ (0[,]+∞) ↔ (𝐵 ∈ ℝ* ∧ 0 ≤ 𝐵))
3011, 29sylib 217 . . . . . . 7 (𝜑 → (𝐵 ∈ ℝ* ∧ 0 ≤ 𝐵))
3130simpld 493 . . . . . 6 (𝜑𝐵 ∈ ℝ*)
32 suppr 9496 . . . . . 6 (( < Or ℝ* ∧ 0 ∈ ℝ*𝐵 ∈ ℝ*) → sup({0, 𝐵}, ℝ*, < ) = if(𝐵 < 0, 0, 𝐵))
3326, 28, 31, 32syl3anc 1368 . . . . 5 (𝜑 → sup({0, 𝐵}, ℝ*, < ) = if(𝐵 < 0, 0, 𝐵))
34 0fin 9196 . . . . . . . . . . 11 ∅ ∈ Fin
3534a1i 11 . . . . . . . . . 10 (𝜑 → ∅ ∈ Fin)
36 reseq2 5980 . . . . . . . . . . . . . 14 (𝑥 = ∅ → ((𝑘 ∈ {𝑀} ↦ 𝐴) ↾ 𝑥) = ((𝑘 ∈ {𝑀} ↦ 𝐴) ↾ ∅))
37 res0 5989 . . . . . . . . . . . . . 14 ((𝑘 ∈ {𝑀} ↦ 𝐴) ↾ ∅) = ∅
3836, 37eqtrdi 2781 . . . . . . . . . . . . 13 (𝑥 = ∅ → ((𝑘 ∈ {𝑀} ↦ 𝐴) ↾ 𝑥) = ∅)
3938oveq2d 7435 . . . . . . . . . . . 12 (𝑥 = ∅ → ((ℝ*𝑠s (0[,]+∞)) Σg ((𝑘 ∈ {𝑀} ↦ 𝐴) ↾ 𝑥)) = ((ℝ*𝑠s (0[,]+∞)) Σg ∅))
40 xrge00 32831 . . . . . . . . . . . . 13 0 = (0g‘(ℝ*𝑠s (0[,]+∞)))
4140gsum0 18647 . . . . . . . . . . . 12 ((ℝ*𝑠s (0[,]+∞)) Σg ∅) = 0
4239, 41eqtrdi 2781 . . . . . . . . . . 11 (𝑥 = ∅ → ((ℝ*𝑠s (0[,]+∞)) Σg ((𝑘 ∈ {𝑀} ↦ 𝐴) ↾ 𝑥)) = 0)
4342adantl 480 . . . . . . . . . 10 ((𝜑𝑥 = ∅) → ((ℝ*𝑠s (0[,]+∞)) Σg ((𝑘 ∈ {𝑀} ↦ 𝐴) ↾ 𝑥)) = 0)
44 reseq2 5980 . . . . . . . . . . . . 13 (𝑥 = {𝑀} → ((𝑘 ∈ {𝑀} ↦ 𝐴) ↾ 𝑥) = ((𝑘 ∈ {𝑀} ↦ 𝐴) ↾ {𝑀}))
45 ssid 3999 . . . . . . . . . . . . . 14 {𝑀} ⊆ {𝑀}
46 resmpt 6042 . . . . . . . . . . . . . 14 ({𝑀} ⊆ {𝑀} → ((𝑘 ∈ {𝑀} ↦ 𝐴) ↾ {𝑀}) = (𝑘 ∈ {𝑀} ↦ 𝐴))
4745, 46ax-mp 5 . . . . . . . . . . . . 13 ((𝑘 ∈ {𝑀} ↦ 𝐴) ↾ {𝑀}) = (𝑘 ∈ {𝑀} ↦ 𝐴)
4844, 47eqtrdi 2781 . . . . . . . . . . . 12 (𝑥 = {𝑀} → ((𝑘 ∈ {𝑀} ↦ 𝐴) ↾ 𝑥) = (𝑘 ∈ {𝑀} ↦ 𝐴))
4948oveq2d 7435 . . . . . . . . . . 11 (𝑥 = {𝑀} → ((ℝ*𝑠s (0[,]+∞)) Σg ((𝑘 ∈ {𝑀} ↦ 𝐴) ↾ 𝑥)) = ((ℝ*𝑠s (0[,]+∞)) Σg (𝑘 ∈ {𝑀} ↦ 𝐴)))
50 xrge0base 32830 . . . . . . . . . . . 12 (0[,]+∞) = (Base‘(ℝ*𝑠s (0[,]+∞)))
51 xrge0cmn 21358 . . . . . . . . . . . . . 14 (ℝ*𝑠s (0[,]+∞)) ∈ CMnd
52 cmnmnd 19764 . . . . . . . . . . . . . 14 ((ℝ*𝑠s (0[,]+∞)) ∈ CMnd → (ℝ*𝑠s (0[,]+∞)) ∈ Mnd)
5351, 52ax-mp 5 . . . . . . . . . . . . 13 (ℝ*𝑠s (0[,]+∞)) ∈ Mnd
5453a1i 11 . . . . . . . . . . . 12 (𝜑 → (ℝ*𝑠s (0[,]+∞)) ∈ Mnd)
55 nfv 1909 . . . . . . . . . . . 12 𝑘𝜑
5650, 54, 10, 11, 7, 55, 14gsumsnfd 19918 . . . . . . . . . . 11 (𝜑 → ((ℝ*𝑠s (0[,]+∞)) Σg (𝑘 ∈ {𝑀} ↦ 𝐴)) = 𝐵)
5749, 56sylan9eqr 2787 . . . . . . . . . 10 ((𝜑𝑥 = {𝑀}) → ((ℝ*𝑠s (0[,]+∞)) Σg ((𝑘 ∈ {𝑀} ↦ 𝐴) ↾ 𝑥)) = 𝐵)
5835, 5, 28, 11, 43, 57fmptpr 7181 . . . . . . . . 9 (𝜑 → {⟨∅, 0⟩, ⟨{𝑀}, 𝐵⟩} = (𝑥 ∈ {∅, {𝑀}} ↦ ((ℝ*𝑠s (0[,]+∞)) Σg ((𝑘 ∈ {𝑀} ↦ 𝐴) ↾ 𝑥))))
59 pwsn 4902 . . . . . . . . . . . . 13 𝒫 {𝑀} = {∅, {𝑀}}
60 prssi 4826 . . . . . . . . . . . . . 14 ((∅ ∈ Fin ∧ {𝑀} ∈ Fin) → {∅, {𝑀}} ⊆ Fin)
6134, 4, 60mp2an 690 . . . . . . . . . . . . 13 {∅, {𝑀}} ⊆ Fin
6259, 61eqsstri 4011 . . . . . . . . . . . 12 𝒫 {𝑀} ⊆ Fin
63 dfss2 3962 . . . . . . . . . . . 12 (𝒫 {𝑀} ⊆ Fin ↔ (𝒫 {𝑀} ∩ Fin) = 𝒫 {𝑀})
6462, 63mpbi 229 . . . . . . . . . . 11 (𝒫 {𝑀} ∩ Fin) = 𝒫 {𝑀}
6564, 59eqtri 2753 . . . . . . . . . 10 (𝒫 {𝑀} ∩ Fin) = {∅, {𝑀}}
66 eqid 2725 . . . . . . . . . 10 ((ℝ*𝑠s (0[,]+∞)) Σg ((𝑘 ∈ {𝑀} ↦ 𝐴) ↾ 𝑥)) = ((ℝ*𝑠s (0[,]+∞)) Σg ((𝑘 ∈ {𝑀} ↦ 𝐴) ↾ 𝑥))
6765, 66mpteq12i 5255 . . . . . . . . 9 (𝑥 ∈ (𝒫 {𝑀} ∩ Fin) ↦ ((ℝ*𝑠s (0[,]+∞)) Σg ((𝑘 ∈ {𝑀} ↦ 𝐴) ↾ 𝑥))) = (𝑥 ∈ {∅, {𝑀}} ↦ ((ℝ*𝑠s (0[,]+∞)) Σg ((𝑘 ∈ {𝑀} ↦ 𝐴) ↾ 𝑥)))
6858, 67eqtr4di 2783 . . . . . . . 8 (𝜑 → {⟨∅, 0⟩, ⟨{𝑀}, 𝐵⟩} = (𝑥 ∈ (𝒫 {𝑀} ∩ Fin) ↦ ((ℝ*𝑠s (0[,]+∞)) Σg ((𝑘 ∈ {𝑀} ↦ 𝐴) ↾ 𝑥))))
6968rneqd 5940 . . . . . . 7 (𝜑 → ran {⟨∅, 0⟩, ⟨{𝑀}, 𝐵⟩} = ran (𝑥 ∈ (𝒫 {𝑀} ∩ Fin) ↦ ((ℝ*𝑠s (0[,]+∞)) Σg ((𝑘 ∈ {𝑀} ↦ 𝐴) ↾ 𝑥))))
70 rnpropg 6228 . . . . . . . 8 ((∅ ∈ Fin ∧ {𝑀} ∈ Fin) → ran {⟨∅, 0⟩, ⟨{𝑀}, 𝐵⟩} = {0, 𝐵})
7135, 5, 70syl2anc 582 . . . . . . 7 (𝜑 → ran {⟨∅, 0⟩, ⟨{𝑀}, 𝐵⟩} = {0, 𝐵})
7269, 71eqtr3d 2767 . . . . . 6 (𝜑 → ran (𝑥 ∈ (𝒫 {𝑀} ∩ Fin) ↦ ((ℝ*𝑠s (0[,]+∞)) Σg ((𝑘 ∈ {𝑀} ↦ 𝐴) ↾ 𝑥))) = {0, 𝐵})
7372supeq1d 9471 . . . . 5 (𝜑 → sup(ran (𝑥 ∈ (𝒫 {𝑀} ∩ Fin) ↦ ((ℝ*𝑠s (0[,]+∞)) Σg ((𝑘 ∈ {𝑀} ↦ 𝐴) ↾ 𝑥))), ℝ*, < ) = sup({0, 𝐵}, ℝ*, < ))
7430simprd 494 . . . . . . . . 9 (𝜑 → 0 ≤ 𝐵)
75 xrlenlt 11311 . . . . . . . . . 10 ((0 ∈ ℝ*𝐵 ∈ ℝ*) → (0 ≤ 𝐵 ↔ ¬ 𝐵 < 0))
7628, 31, 75syl2anc 582 . . . . . . . . 9 (𝜑 → (0 ≤ 𝐵 ↔ ¬ 𝐵 < 0))
7774, 76mpbid 231 . . . . . . . 8 (𝜑 → ¬ 𝐵 < 0)
78 eqidd 2726 . . . . . . . 8 (𝜑𝐵 = 𝐵)
7977, 78jca 510 . . . . . . 7 (𝜑 → (¬ 𝐵 < 0 ∧ 𝐵 = 𝐵))
8079olcd 872 . . . . . 6 (𝜑 → ((𝐵 < 0 ∧ 𝐵 = 0) ∨ (¬ 𝐵 < 0 ∧ 𝐵 = 𝐵)))
81 eqif 4571 . . . . . 6 (𝐵 = if(𝐵 < 0, 0, 𝐵) ↔ ((𝐵 < 0 ∧ 𝐵 = 0) ∨ (¬ 𝐵 < 0 ∧ 𝐵 = 𝐵)))
8280, 81sylibr 233 . . . . 5 (𝜑𝐵 = if(𝐵 < 0, 0, 𝐵))
8333, 73, 823eqtr4rd 2776 . . . 4 (𝜑𝐵 = sup(ran (𝑥 ∈ (𝒫 {𝑀} ∩ Fin) ↦ ((ℝ*𝑠s (0[,]+∞)) Σg ((𝑘 ∈ {𝑀} ↦ 𝐴) ↾ 𝑥))), ℝ*, < ))
843, 5, 24, 83xrge0tsmsd 32861 . . 3 (𝜑 → ((ℝ*𝑠s (0[,]+∞)) tsums (𝑘 ∈ {𝑀} ↦ 𝐴)) = {𝐵})
8584unieqd 4922 . 2 (𝜑 ((ℝ*𝑠s (0[,]+∞)) tsums (𝑘 ∈ {𝑀} ↦ 𝐴)) = {𝐵})
86 unisng 4929 . . 3 (𝐵 ∈ (0[,]+∞) → {𝐵} = 𝐵)
8711, 86syl 17 . 2 (𝜑 {𝐵} = 𝐵)
882, 85, 873eqtrd 2769 1 (𝜑 → Σ*𝑘 ∈ {𝑀}𝐴 = 𝐵)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 205  wa 394  wo 845   = wceq 1533  wcel 2098  wnfc 2875  cin 3943  wss 3944  c0 4322  ifcif 4530  𝒫 cpw 4604  {csn 4630  {cpr 4632  cop 4636   cuni 4909   class class class wbr 5149  cmpt 5232   Or wor 5589  ran crn 5679  cres 5680  wf 6545  (class class class)co 7419  Fincfn 8964  supcsup 9465  0cc0 11140  +∞cpnf 11277  *cxr 11279   < clt 11280  cle 11281  [,]cicc 13362  s cress 17212   Σg cgsu 17425  *𝑠cxrs 17485  Mndcmnd 18697  CMndccmn 19747   tsums ctsu 24074  Σ*cesum 33777
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2166  ax-ext 2696  ax-rep 5286  ax-sep 5300  ax-nul 5307  ax-pow 5365  ax-pr 5429  ax-un 7741  ax-cnex 11196  ax-resscn 11197  ax-1cn 11198  ax-icn 11199  ax-addcl 11200  ax-addrcl 11201  ax-mulcl 11202  ax-mulrcl 11203  ax-mulcom 11204  ax-addass 11205  ax-mulass 11206  ax-distr 11207  ax-i2m1 11208  ax-1ne0 11209  ax-1rid 11210  ax-rnegex 11211  ax-rrecex 11212  ax-cnre 11213  ax-pre-lttri 11214  ax-pre-lttrn 11215  ax-pre-ltadd 11216  ax-pre-mulgt0 11217  ax-pre-sup 11218
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 846  df-3or 1085  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2528  df-eu 2557  df-clab 2703  df-cleq 2717  df-clel 2802  df-nfc 2877  df-ne 2930  df-nel 3036  df-ral 3051  df-rex 3060  df-rmo 3363  df-reu 3364  df-rab 3419  df-v 3463  df-sbc 3774  df-csb 3890  df-dif 3947  df-un 3949  df-in 3951  df-ss 3961  df-pss 3964  df-nul 4323  df-if 4531  df-pw 4606  df-sn 4631  df-pr 4633  df-tp 4635  df-op 4637  df-uni 4910  df-int 4951  df-iun 4999  df-iin 5000  df-br 5150  df-opab 5212  df-mpt 5233  df-tr 5267  df-id 5576  df-eprel 5582  df-po 5590  df-so 5591  df-fr 5633  df-se 5634  df-we 5635  df-xp 5684  df-rel 5685  df-cnv 5686  df-co 5687  df-dm 5688  df-rn 5689  df-res 5690  df-ima 5691  df-pred 6307  df-ord 6374  df-on 6375  df-lim 6376  df-suc 6377  df-iota 6501  df-fun 6551  df-fn 6552  df-f 6553  df-f1 6554  df-fo 6555  df-f1o 6556  df-fv 6557  df-isom 6558  df-riota 7375  df-ov 7422  df-oprab 7423  df-mpo 7424  df-of 7685  df-om 7872  df-1st 7994  df-2nd 7995  df-supp 8166  df-frecs 8287  df-wrecs 8318  df-recs 8392  df-rdg 8431  df-1o 8487  df-er 8725  df-map 8847  df-en 8965  df-dom 8966  df-sdom 8967  df-fin 8968  df-fsupp 9388  df-fi 9436  df-sup 9467  df-inf 9468  df-oi 9535  df-card 9964  df-pnf 11282  df-mnf 11283  df-xr 11284  df-ltxr 11285  df-le 11286  df-sub 11478  df-neg 11479  df-div 11904  df-nn 12246  df-2 12308  df-3 12309  df-4 12310  df-5 12311  df-6 12312  df-7 12313  df-8 12314  df-9 12315  df-n0 12506  df-z 12592  df-dec 12711  df-uz 12856  df-q 12966  df-xadd 13128  df-ioo 13363  df-ioc 13364  df-ico 13365  df-icc 13366  df-fz 13520  df-fzo 13663  df-seq 14003  df-hash 14326  df-struct 17119  df-sets 17136  df-slot 17154  df-ndx 17166  df-base 17184  df-ress 17213  df-plusg 17249  df-mulr 17250  df-tset 17255  df-ple 17256  df-ds 17258  df-rest 17407  df-topn 17408  df-0g 17426  df-gsum 17427  df-topgen 17428  df-ordt 17486  df-xrs 17487  df-mre 17569  df-mrc 17570  df-acs 17572  df-ps 18561  df-tsr 18562  df-mgm 18603  df-sgrp 18682  df-mnd 18698  df-submnd 18744  df-mulg 19032  df-cntz 19280  df-cmn 19749  df-fbas 21293  df-fg 21294  df-top 22840  df-topon 22857  df-topsp 22879  df-bases 22893  df-ntr 22968  df-nei 23046  df-cn 23175  df-haus 23263  df-fil 23794  df-fm 23886  df-flim 23887  df-flf 23888  df-tsms 24075  df-esum 33778
This theorem is referenced by:  esumsn  33815  esum2dlem  33842
  Copyright terms: Public domain W3C validator
OSZAR »