![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > resabs2 | Structured version Visualization version GIF version |
Description: Absorption law for restriction. (Contributed by NM, 27-Mar-1998.) |
Ref | Expression |
---|---|
resabs2 | ⊢ (𝐵 ⊆ 𝐶 → ((𝐴 ↾ 𝐵) ↾ 𝐶) = (𝐴 ↾ 𝐵)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | rescom 6011 | . 2 ⊢ ((𝐴 ↾ 𝐵) ↾ 𝐶) = ((𝐴 ↾ 𝐶) ↾ 𝐵) | |
2 | resabs1 6015 | . 2 ⊢ (𝐵 ⊆ 𝐶 → ((𝐴 ↾ 𝐶) ↾ 𝐵) = (𝐴 ↾ 𝐵)) | |
3 | 1, 2 | eqtrid 2780 | 1 ⊢ (𝐵 ⊆ 𝐶 → ((𝐴 ↾ 𝐵) ↾ 𝐶) = (𝐴 ↾ 𝐵)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1534 ⊆ wss 3947 ↾ cres 5680 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1790 ax-4 1804 ax-5 1906 ax-6 1964 ax-7 2004 ax-8 2101 ax-9 2109 ax-ext 2699 ax-sep 5299 ax-nul 5306 ax-pr 5429 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 847 df-3an 1087 df-tru 1537 df-fal 1547 df-ex 1775 df-sb 2061 df-clab 2706 df-cleq 2720 df-clel 2806 df-ral 3059 df-rex 3068 df-rab 3430 df-v 3473 df-dif 3950 df-un 3952 df-in 3954 df-ss 3964 df-nul 4324 df-if 4530 df-sn 4630 df-pr 4632 df-op 4636 df-opab 5211 df-xp 5684 df-rel 5685 df-res 5690 |
This theorem is referenced by: residm 6018 fresaunres2 6769 resabs2i 44506 resabs2d 44786 fourierdlem104 45598 fouriersw 45619 |
Copyright terms: Public domain | W3C validator |