MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  resabs1d Structured version   Visualization version   GIF version

Theorem resabs1d 6016
Description: Absorption law for restriction, deduction form. (Contributed by Glauco Siliprandi, 11-Dec-2019.)
Hypothesis
Ref Expression
resabs1d.b (𝜑𝐵𝐶)
Assertion
Ref Expression
resabs1d (𝜑 → ((𝐴𝐶) ↾ 𝐵) = (𝐴𝐵))

Proof of Theorem resabs1d
StepHypRef Expression
1 resabs1d.b . 2 (𝜑𝐵𝐶)
2 resabs1 6015 . 2 (𝐵𝐶 → ((𝐴𝐶) ↾ 𝐵) = (𝐴𝐵))
31, 2syl 17 1 (𝜑 → ((𝐴𝐶) ↾ 𝐵) = (𝐴𝐵))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1534  wss 3947  cres 5680
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1790  ax-4 1804  ax-5 1906  ax-6 1964  ax-7 2004  ax-8 2101  ax-9 2109  ax-ext 2699  ax-sep 5299  ax-nul 5306  ax-pr 5429
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 847  df-3an 1087  df-tru 1537  df-fal 1547  df-ex 1775  df-sb 2061  df-clab 2706  df-cleq 2720  df-clel 2806  df-ral 3059  df-rex 3068  df-rab 3430  df-v 3473  df-dif 3950  df-un 3952  df-in 3954  df-ss 3964  df-nul 4324  df-if 4530  df-sn 4630  df-pr 4632  df-op 4636  df-opab 5211  df-xp 5684  df-rel 5685  df-res 5690
This theorem is referenced by:  f2ndf  8125  frrlem12  8302  ablfac1eulem  20028  funcrngcsetc  20572  funcrngcsetcALT  20573  funcringcsetc  20606  kgencn2  23460  tsmsres  24047  resubmet  24717  xrge0gsumle  24748  cmssmscld  25277  cmsss  25278  cmscsscms  25300  minveclem3a  25354  dvmptresicc  25844  dvlip2  25927  c1liplem1  25928  efcvx  26385  logccv  26596  loglesqrt  26692  wilthlem2  27000  nosupno  27635  nosupbnd1lem1  27640  nosupbnd2  27648  noinfno  27650  noinfbnd1lem1  27655  noinfbnd2  27663  symgcom2  32807  cyc3conja  32878  bnj1280  34651  cvmlift2lem9  34921  mbfresfi  37139  ssbnd  37261  prdsbnd2  37268  cnpwstotbnd  37270  reheibor  37312  diophin  42192  fnwe2lem2  42475  dvsid  43768  limcresiooub  45030  limcresioolb  45031  fourierdlem46  45540  fourierdlem48  45542  fourierdlem49  45543  fourierdlem58  45552  fourierdlem72  45566  fourierdlem73  45567  fourierdlem74  45568  fourierdlem75  45569  fourierdlem89  45583  fourierdlem90  45584  fourierdlem91  45585  fourierdlem93  45587  fourierdlem100  45594  fourierdlem102  45596  fourierdlem103  45597  fourierdlem104  45598  fourierdlem107  45601  fourierdlem111  45605  fourierdlem112  45606  fourierdlem114  45608  afvres  46552  afv2res  46619
  Copyright terms: Public domain W3C validator
OSZAR »