Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  fourierdlem112 Structured version   Visualization version   GIF version

Theorem fourierdlem112 45600
Description: Here abbreviations (local definitions) are introduced to prove the fourier 45607 theorem. (𝑍𝑚) is the mth partial sum of the fourier series. (Contributed by Glauco Siliprandi, 11-Dec-2019.)
Hypotheses
Ref Expression
fourierdlem112.f (𝜑𝐹:ℝ⟶ℝ)
fourierdlem112.d 𝐷 = (𝑚 ∈ ℕ ↦ (𝑦 ∈ ℝ ↦ if((𝑦 mod (2 · π)) = 0, (((2 · 𝑚) + 1) / (2 · π)), ((sin‘((𝑚 + (1 / 2)) · 𝑦)) / ((2 · π) · (sin‘(𝑦 / 2)))))))
fourierdlem112.p 𝑃 = (𝑛 ∈ ℕ ↦ {𝑝 ∈ (ℝ ↑m (0...𝑛)) ∣ (((𝑝‘0) = -π ∧ (𝑝𝑛) = π) ∧ ∀𝑖 ∈ (0..^𝑛)(𝑝𝑖) < (𝑝‘(𝑖 + 1)))})
fourierdlem112.m (𝜑𝑀 ∈ ℕ)
fourierdlem112.q (𝜑𝑄 ∈ (𝑃𝑀))
fourierdlem112.n 𝑁 = ((♯‘({(-π + 𝑋), (π + 𝑋)} ∪ {𝑦 ∈ ((-π + 𝑋)[,](π + 𝑋)) ∣ ∃𝑘 ∈ ℤ (𝑦 + (𝑘 · 𝑇)) ∈ ran 𝑄})) − 1)
fourierdlem112.v 𝑉 = (℩𝑓𝑓 Isom < , < ((0...𝑁), ({(-π + 𝑋), (π + 𝑋)} ∪ {𝑦 ∈ ((-π + 𝑋)[,](π + 𝑋)) ∣ ∃𝑘 ∈ ℤ (𝑦 + (𝑘 · 𝑇)) ∈ ran 𝑄})))
fourierdlem112.x (𝜑𝑋 ∈ ℝ)
fourierdlem112.xran (𝜑𝑋 ∈ ran 𝑉)
fourierdlem112.t 𝑇 = (2 · π)
fourierdlem112.fper ((𝜑𝑥 ∈ ℝ) → (𝐹‘(𝑥 + 𝑇)) = (𝐹𝑥))
fourierdlem112.fcn ((𝜑𝑖 ∈ (0..^𝑀)) → (𝐹 ↾ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))) ∈ (((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))–cn→ℂ))
fourierdlem112.c ((𝜑𝑖 ∈ (0..^𝑀)) → 𝐶 ∈ ((𝐹 ↾ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))) lim (𝑄𝑖)))
fourierdlem112.u ((𝜑𝑖 ∈ (0..^𝑀)) → 𝑈 ∈ ((𝐹 ↾ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))) lim (𝑄‘(𝑖 + 1))))
fourierdlem112.fdvcn ((𝜑𝑖 ∈ (0..^𝑀)) → ((ℝ D 𝐹) ↾ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))) ∈ (((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))–cn→ℂ))
fourierdlem112.e (𝜑𝐸 ∈ (((ℝ D 𝐹) ↾ (-∞(,)𝑋)) lim 𝑋))
fourierdlem112.i (𝜑𝐼 ∈ (((ℝ D 𝐹) ↾ (𝑋(,)+∞)) lim 𝑋))
fourierdlem112.l (𝜑𝐿 ∈ ((𝐹 ↾ (-∞(,)𝑋)) lim 𝑋))
fourierdlem112.r (𝜑𝑅 ∈ ((𝐹 ↾ (𝑋(,)+∞)) lim 𝑋))
fourierdlem112.a 𝐴 = (𝑛 ∈ ℕ0 ↦ (∫(-π(,)π)((𝐹𝑥) · (cos‘(𝑛 · 𝑥))) d𝑥 / π))
fourierdlem112.b 𝐵 = (𝑛 ∈ ℕ ↦ (∫(-π(,)π)((𝐹𝑥) · (sin‘(𝑛 · 𝑥))) d𝑥 / π))
fourierdlem112.z 𝑍 = (𝑚 ∈ ℕ ↦ (((𝐴‘0) / 2) + Σ𝑛 ∈ (1...𝑚)(((𝐴𝑛) · (cos‘(𝑛 · 𝑋))) + ((𝐵𝑛) · (sin‘(𝑛 · 𝑋))))))
fourierdlem112.23 𝑆 = (𝑛 ∈ ℕ ↦ (((𝐴𝑛) · (cos‘(𝑛 · 𝑋))) + ((𝐵𝑛) · (sin‘(𝑛 · 𝑋)))))
fourierdlem112.fbd (𝜑 → ∃𝑤 ∈ ℝ ∀𝑡 ∈ ℝ (abs‘(𝐹𝑡)) ≤ 𝑤)
fourierdlem112.fdvbd (𝜑 → ∃𝑧 ∈ ℝ ∀𝑡 ∈ dom (ℝ D 𝐹)(abs‘((ℝ D 𝐹)‘𝑡)) ≤ 𝑧)
fourierdlem112.25 (𝜑𝑋 ∈ ℝ)
Assertion
Ref Expression
fourierdlem112 (𝜑 → (seq1( + , 𝑆) ⇝ (((𝐿 + 𝑅) / 2) − ((𝐴‘0) / 2)) ∧ (((𝐴‘0) / 2) + Σ𝑛 ∈ ℕ (((𝐴𝑛) · (cos‘(𝑛 · 𝑋))) + ((𝐵𝑛) · (sin‘(𝑛 · 𝑋))))) = ((𝐿 + 𝑅) / 2)))
Distinct variable groups:   𝐴,𝑘,𝑚,𝑛   𝐵,𝑘,𝑚,𝑛   𝑡,𝐶,𝑚   𝑥,𝐶,𝑚   𝐷,𝑖,𝑘,𝑚,𝑛,𝑥,𝑦   𝑖,𝐹,𝑡,𝑧   𝑦,𝐹,𝑡,𝑘,𝑚   𝑧,𝑘,𝑚   𝑛,𝐹   𝑤,𝐹,𝑖,𝑡,𝑧   𝑥,𝐹   𝑖,𝐿,𝑡,𝑧,𝑘,𝑚   𝑛,𝐿   𝑤,𝐿   𝑓,𝑀,𝑖,𝑡,𝑦,𝑚   𝑛,𝑀,𝑥   𝑀,𝑝,𝑖,𝑛,𝑦   𝑖,𝑁,𝑡,𝑤,𝑧   𝑓,𝑁,𝑦,𝑚   𝑛,𝑁,𝑝   𝑥,𝑁,𝑓   𝑄,𝑓,𝑖,𝑡,𝑦,𝑘,𝑚   𝑄,𝑛,𝑥   𝑄,𝑝,𝑘   𝑅,𝑖,𝑡,𝑧,𝑘,𝑚   𝑅,𝑛   𝑤,𝑅   𝑇,𝑓,𝑡,𝑦,𝑖,𝑘,𝑚   𝑇,𝑛,𝑥   𝑇,𝑝   𝑡,𝑈,𝑚   𝑥,𝑈   𝑖,𝑉,𝑡,𝑤,𝑧   𝑓,𝑉,𝑘,𝑚   𝑛,𝑉,𝑝   𝑥,𝑉   𝑖,𝑋,𝑡,𝑧   𝑓,𝑋,𝑦,𝑘,𝑚   𝑛,𝑋,𝑝   𝑤,𝑋   𝑥,𝑋   𝑚,𝑍   𝜑,𝑖,𝑡,𝑤,𝑧   𝜑,𝑓,𝑘,𝑚,𝑦   𝜑,𝑛   𝑤,𝑚   𝜑,𝑥
Allowed substitution hints:   𝜑(𝑝)   𝐴(𝑥,𝑦,𝑧,𝑤,𝑡,𝑓,𝑖,𝑝)   𝐵(𝑥,𝑦,𝑧,𝑤,𝑡,𝑓,𝑖,𝑝)   𝐶(𝑦,𝑧,𝑤,𝑓,𝑖,𝑘,𝑛,𝑝)   𝐷(𝑧,𝑤,𝑡,𝑓,𝑝)   𝑃(𝑥,𝑦,𝑧,𝑤,𝑡,𝑓,𝑖,𝑘,𝑚,𝑛,𝑝)   𝑄(𝑧,𝑤)   𝑅(𝑥,𝑦,𝑓,𝑝)   𝑆(𝑥,𝑦,𝑧,𝑤,𝑡,𝑓,𝑖,𝑘,𝑚,𝑛,𝑝)   𝑇(𝑧,𝑤)   𝑈(𝑦,𝑧,𝑤,𝑓,𝑖,𝑘,𝑛,𝑝)   𝐸(𝑥,𝑦,𝑧,𝑤,𝑡,𝑓,𝑖,𝑘,𝑚,𝑛,𝑝)   𝐹(𝑓,𝑝)   𝐼(𝑥,𝑦,𝑧,𝑤,𝑡,𝑓,𝑖,𝑘,𝑚,𝑛,𝑝)   𝐿(𝑥,𝑦,𝑓,𝑝)   𝑀(𝑧,𝑤,𝑘)   𝑁(𝑘)   𝑉(𝑦)   𝑍(𝑥,𝑦,𝑧,𝑤,𝑡,𝑓,𝑖,𝑘,𝑛,𝑝)

Proof of Theorem fourierdlem112
Dummy variables 𝑗 𝑙 𝑎 𝑠 𝑏 𝑒 𝑔 𝑐 𝑢 𝑞 𝑟 𝑣 𝑑 𝑜 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 fourierdlem112.23 . . . . 5 𝑆 = (𝑛 ∈ ℕ ↦ (((𝐴𝑛) · (cos‘(𝑛 · 𝑋))) + ((𝐵𝑛) · (sin‘(𝑛 · 𝑋)))))
2 fveq2 6891 . . . . . . . 8 (𝑛 = 𝑗 → (𝐴𝑛) = (𝐴𝑗))
3 oveq1 7421 . . . . . . . . 9 (𝑛 = 𝑗 → (𝑛 · 𝑋) = (𝑗 · 𝑋))
43fveq2d 6895 . . . . . . . 8 (𝑛 = 𝑗 → (cos‘(𝑛 · 𝑋)) = (cos‘(𝑗 · 𝑋)))
52, 4oveq12d 7432 . . . . . . 7 (𝑛 = 𝑗 → ((𝐴𝑛) · (cos‘(𝑛 · 𝑋))) = ((𝐴𝑗) · (cos‘(𝑗 · 𝑋))))
6 fveq2 6891 . . . . . . . 8 (𝑛 = 𝑗 → (𝐵𝑛) = (𝐵𝑗))
73fveq2d 6895 . . . . . . . 8 (𝑛 = 𝑗 → (sin‘(𝑛 · 𝑋)) = (sin‘(𝑗 · 𝑋)))
86, 7oveq12d 7432 . . . . . . 7 (𝑛 = 𝑗 → ((𝐵𝑛) · (sin‘(𝑛 · 𝑋))) = ((𝐵𝑗) · (sin‘(𝑗 · 𝑋))))
95, 8oveq12d 7432 . . . . . 6 (𝑛 = 𝑗 → (((𝐴𝑛) · (cos‘(𝑛 · 𝑋))) + ((𝐵𝑛) · (sin‘(𝑛 · 𝑋)))) = (((𝐴𝑗) · (cos‘(𝑗 · 𝑋))) + ((𝐵𝑗) · (sin‘(𝑗 · 𝑋)))))
109cbvmptv 5255 . . . . 5 (𝑛 ∈ ℕ ↦ (((𝐴𝑛) · (cos‘(𝑛 · 𝑋))) + ((𝐵𝑛) · (sin‘(𝑛 · 𝑋))))) = (𝑗 ∈ ℕ ↦ (((𝐴𝑗) · (cos‘(𝑗 · 𝑋))) + ((𝐵𝑗) · (sin‘(𝑗 · 𝑋)))))
111, 10eqtri 2756 . . . 4 𝑆 = (𝑗 ∈ ℕ ↦ (((𝐴𝑗) · (cos‘(𝑗 · 𝑋))) + ((𝐵𝑗) · (sin‘(𝑗 · 𝑋)))))
12 seqeq3 13997 . . . 4 (𝑆 = (𝑗 ∈ ℕ ↦ (((𝐴𝑗) · (cos‘(𝑗 · 𝑋))) + ((𝐵𝑗) · (sin‘(𝑗 · 𝑋))))) → seq1( + , 𝑆) = seq1( + , (𝑗 ∈ ℕ ↦ (((𝐴𝑗) · (cos‘(𝑗 · 𝑋))) + ((𝐵𝑗) · (sin‘(𝑗 · 𝑋)))))))
1311, 12mp1i 13 . . 3 (𝜑 → seq1( + , 𝑆) = seq1( + , (𝑗 ∈ ℕ ↦ (((𝐴𝑗) · (cos‘(𝑗 · 𝑋))) + ((𝐵𝑗) · (sin‘(𝑗 · 𝑋)))))))
14 nnuz 12889 . . . . 5 ℕ = (ℤ‘1)
15 1zzd 12617 . . . . 5 (𝜑 → 1 ∈ ℤ)
16 nfv 1910 . . . . . . 7 𝑛𝜑
17 nfcv 2899 . . . . . . . 8 𝑛
18 nfcv 2899 . . . . . . . . 9 𝑛(-π(,)0)
19 nfcv 2899 . . . . . . . . . 10 𝑛(𝐹‘(𝑋 + 𝑠))
20 nfcv 2899 . . . . . . . . . 10 𝑛 ·
21 nfcv 2899 . . . . . . . . . 10 𝑛((𝐷𝑚)‘𝑠)
2219, 20, 21nfov 7444 . . . . . . . . 9 𝑛((𝐹‘(𝑋 + 𝑠)) · ((𝐷𝑚)‘𝑠))
2318, 22nfitg 25697 . . . . . . . 8 𝑛∫(-π(,)0)((𝐹‘(𝑋 + 𝑠)) · ((𝐷𝑚)‘𝑠)) d𝑠
2417, 23nfmpt 5249 . . . . . . 7 𝑛(𝑚 ∈ ℕ ↦ ∫(-π(,)0)((𝐹‘(𝑋 + 𝑠)) · ((𝐷𝑚)‘𝑠)) d𝑠)
25 nfcv 2899 . . . . . . . . 9 𝑛(0(,)π)
2625, 22nfitg 25697 . . . . . . . 8 𝑛∫(0(,)π)((𝐹‘(𝑋 + 𝑠)) · ((𝐷𝑚)‘𝑠)) d𝑠
2717, 26nfmpt 5249 . . . . . . 7 𝑛(𝑚 ∈ ℕ ↦ ∫(0(,)π)((𝐹‘(𝑋 + 𝑠)) · ((𝐷𝑚)‘𝑠)) d𝑠)
28 fourierdlem112.z . . . . . . . 8 𝑍 = (𝑚 ∈ ℕ ↦ (((𝐴‘0) / 2) + Σ𝑛 ∈ (1...𝑚)(((𝐴𝑛) · (cos‘(𝑛 · 𝑋))) + ((𝐵𝑛) · (sin‘(𝑛 · 𝑋))))))
29 fourierdlem112.a . . . . . . . . . . . . 13 𝐴 = (𝑛 ∈ ℕ0 ↦ (∫(-π(,)π)((𝐹𝑥) · (cos‘(𝑛 · 𝑥))) d𝑥 / π))
30 nfmpt1 5250 . . . . . . . . . . . . 13 𝑛(𝑛 ∈ ℕ0 ↦ (∫(-π(,)π)((𝐹𝑥) · (cos‘(𝑛 · 𝑥))) d𝑥 / π))
3129, 30nfcxfr 2897 . . . . . . . . . . . 12 𝑛𝐴
32 nfcv 2899 . . . . . . . . . . . 12 𝑛0
3331, 32nffv 6901 . . . . . . . . . . 11 𝑛(𝐴‘0)
34 nfcv 2899 . . . . . . . . . . 11 𝑛 /
35 nfcv 2899 . . . . . . . . . . 11 𝑛2
3633, 34, 35nfov 7444 . . . . . . . . . 10 𝑛((𝐴‘0) / 2)
37 nfcv 2899 . . . . . . . . . 10 𝑛 +
38 nfcv 2899 . . . . . . . . . . 11 𝑛(1...𝑚)
3938nfsum1 15662 . . . . . . . . . 10 𝑛Σ𝑛 ∈ (1...𝑚)(((𝐴𝑛) · (cos‘(𝑛 · 𝑋))) + ((𝐵𝑛) · (sin‘(𝑛 · 𝑋))))
4036, 37, 39nfov 7444 . . . . . . . . 9 𝑛(((𝐴‘0) / 2) + Σ𝑛 ∈ (1...𝑚)(((𝐴𝑛) · (cos‘(𝑛 · 𝑋))) + ((𝐵𝑛) · (sin‘(𝑛 · 𝑋)))))
4117, 40nfmpt 5249 . . . . . . . 8 𝑛(𝑚 ∈ ℕ ↦ (((𝐴‘0) / 2) + Σ𝑛 ∈ (1...𝑚)(((𝐴𝑛) · (cos‘(𝑛 · 𝑋))) + ((𝐵𝑛) · (sin‘(𝑛 · 𝑋))))))
4228, 41nfcxfr 2897 . . . . . . 7 𝑛𝑍
43 fourierdlem112.f . . . . . . . 8 (𝜑𝐹:ℝ⟶ℝ)
44 fourierdlem112.25 . . . . . . . 8 (𝜑𝑋 ∈ ℝ)
45 eqid 2728 . . . . . . . 8 (𝑛 ∈ ℕ ↦ {𝑝 ∈ (ℝ ↑m (0...𝑛)) ∣ (((𝑝‘0) = (-π + 𝑋) ∧ (𝑝𝑛) = (π + 𝑋)) ∧ ∀𝑖 ∈ (0..^𝑛)(𝑝𝑖) < (𝑝‘(𝑖 + 1)))}) = (𝑛 ∈ ℕ ↦ {𝑝 ∈ (ℝ ↑m (0...𝑛)) ∣ (((𝑝‘0) = (-π + 𝑋) ∧ (𝑝𝑛) = (π + 𝑋)) ∧ ∀𝑖 ∈ (0..^𝑛)(𝑝𝑖) < (𝑝‘(𝑖 + 1)))})
46 picn 26387 . . . . . . . . . . . . 13 π ∈ ℂ
47462timesi 12374 . . . . . . . . . . . 12 (2 · π) = (π + π)
48 fourierdlem112.t . . . . . . . . . . . 12 𝑇 = (2 · π)
4946, 46subnegi 11563 . . . . . . . . . . . 12 (π − -π) = (π + π)
5047, 48, 493eqtr4i 2766 . . . . . . . . . . 11 𝑇 = (π − -π)
51 fourierdlem112.p . . . . . . . . . . 11 𝑃 = (𝑛 ∈ ℕ ↦ {𝑝 ∈ (ℝ ↑m (0...𝑛)) ∣ (((𝑝‘0) = -π ∧ (𝑝𝑛) = π) ∧ ∀𝑖 ∈ (0..^𝑛)(𝑝𝑖) < (𝑝‘(𝑖 + 1)))})
52 fourierdlem112.m . . . . . . . . . . 11 (𝜑𝑀 ∈ ℕ)
53 fourierdlem112.q . . . . . . . . . . 11 (𝜑𝑄 ∈ (𝑃𝑀))
54 pire 26386 . . . . . . . . . . . . . 14 π ∈ ℝ
5554a1i 11 . . . . . . . . . . . . 13 (𝜑 → π ∈ ℝ)
5655renegcld 11665 . . . . . . . . . . . 12 (𝜑 → -π ∈ ℝ)
5756, 44readdcld 11267 . . . . . . . . . . 11 (𝜑 → (-π + 𝑋) ∈ ℝ)
5855, 44readdcld 11267 . . . . . . . . . . 11 (𝜑 → (π + 𝑋) ∈ ℝ)
59 negpilt0 44656 . . . . . . . . . . . . . 14 -π < 0
60 pipos 26388 . . . . . . . . . . . . . 14 0 < π
6154renegcli 11545 . . . . . . . . . . . . . . 15 -π ∈ ℝ
62 0re 11240 . . . . . . . . . . . . . . 15 0 ∈ ℝ
6361, 62, 54lttri 11364 . . . . . . . . . . . . . 14 ((-π < 0 ∧ 0 < π) → -π < π)
6459, 60, 63mp2an 691 . . . . . . . . . . . . 13 -π < π
6564a1i 11 . . . . . . . . . . . 12 (𝜑 → -π < π)
6656, 55, 44, 65ltadd1dd 11849 . . . . . . . . . . 11 (𝜑 → (-π + 𝑋) < (π + 𝑋))
67 oveq1 7421 . . . . . . . . . . . . . . 15 (𝑦 = 𝑥 → (𝑦 + (𝑘 · 𝑇)) = (𝑥 + (𝑘 · 𝑇)))
6867eleq1d 2814 . . . . . . . . . . . . . 14 (𝑦 = 𝑥 → ((𝑦 + (𝑘 · 𝑇)) ∈ ran 𝑄 ↔ (𝑥 + (𝑘 · 𝑇)) ∈ ran 𝑄))
6968rexbidv 3174 . . . . . . . . . . . . 13 (𝑦 = 𝑥 → (∃𝑘 ∈ ℤ (𝑦 + (𝑘 · 𝑇)) ∈ ran 𝑄 ↔ ∃𝑘 ∈ ℤ (𝑥 + (𝑘 · 𝑇)) ∈ ran 𝑄))
7069cbvrabv 3438 . . . . . . . . . . . 12 {𝑦 ∈ ((-π + 𝑋)[,](π + 𝑋)) ∣ ∃𝑘 ∈ ℤ (𝑦 + (𝑘 · 𝑇)) ∈ ran 𝑄} = {𝑥 ∈ ((-π + 𝑋)[,](π + 𝑋)) ∣ ∃𝑘 ∈ ℤ (𝑥 + (𝑘 · 𝑇)) ∈ ran 𝑄}
7170uneq2i 4156 . . . . . . . . . . 11 ({(-π + 𝑋), (π + 𝑋)} ∪ {𝑦 ∈ ((-π + 𝑋)[,](π + 𝑋)) ∣ ∃𝑘 ∈ ℤ (𝑦 + (𝑘 · 𝑇)) ∈ ran 𝑄}) = ({(-π + 𝑋), (π + 𝑋)} ∪ {𝑥 ∈ ((-π + 𝑋)[,](π + 𝑋)) ∣ ∃𝑘 ∈ ℤ (𝑥 + (𝑘 · 𝑇)) ∈ ran 𝑄})
72 fourierdlem112.n . . . . . . . . . . 11 𝑁 = ((♯‘({(-π + 𝑋), (π + 𝑋)} ∪ {𝑦 ∈ ((-π + 𝑋)[,](π + 𝑋)) ∣ ∃𝑘 ∈ ℤ (𝑦 + (𝑘 · 𝑇)) ∈ ran 𝑄})) − 1)
73 fourierdlem112.v . . . . . . . . . . 11 𝑉 = (℩𝑓𝑓 Isom < , < ((0...𝑁), ({(-π + 𝑋), (π + 𝑋)} ∪ {𝑦 ∈ ((-π + 𝑋)[,](π + 𝑋)) ∣ ∃𝑘 ∈ ℤ (𝑦 + (𝑘 · 𝑇)) ∈ ran 𝑄})))
7450, 51, 52, 53, 57, 58, 66, 45, 71, 72, 73fourierdlem54 45542 . . . . . . . . . 10 (𝜑 → ((𝑁 ∈ ℕ ∧ 𝑉 ∈ ((𝑛 ∈ ℕ ↦ {𝑝 ∈ (ℝ ↑m (0...𝑛)) ∣ (((𝑝‘0) = (-π + 𝑋) ∧ (𝑝𝑛) = (π + 𝑋)) ∧ ∀𝑖 ∈ (0..^𝑛)(𝑝𝑖) < (𝑝‘(𝑖 + 1)))})‘𝑁)) ∧ 𝑉 Isom < , < ((0...𝑁), ({(-π + 𝑋), (π + 𝑋)} ∪ {𝑦 ∈ ((-π + 𝑋)[,](π + 𝑋)) ∣ ∃𝑘 ∈ ℤ (𝑦 + (𝑘 · 𝑇)) ∈ ran 𝑄}))))
7574simpld 494 . . . . . . . . 9 (𝜑 → (𝑁 ∈ ℕ ∧ 𝑉 ∈ ((𝑛 ∈ ℕ ↦ {𝑝 ∈ (ℝ ↑m (0...𝑛)) ∣ (((𝑝‘0) = (-π + 𝑋) ∧ (𝑝𝑛) = (π + 𝑋)) ∧ ∀𝑖 ∈ (0..^𝑛)(𝑝𝑖) < (𝑝‘(𝑖 + 1)))})‘𝑁)))
7675simpld 494 . . . . . . . 8 (𝜑𝑁 ∈ ℕ)
7775simprd 495 . . . . . . . 8 (𝜑𝑉 ∈ ((𝑛 ∈ ℕ ↦ {𝑝 ∈ (ℝ ↑m (0...𝑛)) ∣ (((𝑝‘0) = (-π + 𝑋) ∧ (𝑝𝑛) = (π + 𝑋)) ∧ ∀𝑖 ∈ (0..^𝑛)(𝑝𝑖) < (𝑝‘(𝑖 + 1)))})‘𝑁))
78 fourierdlem112.xran . . . . . . . 8 (𝜑𝑋 ∈ ran 𝑉)
7943adantr 480 . . . . . . . . 9 ((𝜑𝑖 ∈ (0..^𝑁)) → 𝐹:ℝ⟶ℝ)
80 fveq2 6891 . . . . . . . . . . . . . . . 16 (𝑖 = 𝑗 → (𝑝𝑖) = (𝑝𝑗))
81 oveq1 7421 . . . . . . . . . . . . . . . . 17 (𝑖 = 𝑗 → (𝑖 + 1) = (𝑗 + 1))
8281fveq2d 6895 . . . . . . . . . . . . . . . 16 (𝑖 = 𝑗 → (𝑝‘(𝑖 + 1)) = (𝑝‘(𝑗 + 1)))
8380, 82breq12d 5155 . . . . . . . . . . . . . . 15 (𝑖 = 𝑗 → ((𝑝𝑖) < (𝑝‘(𝑖 + 1)) ↔ (𝑝𝑗) < (𝑝‘(𝑗 + 1))))
8483cbvralvw 3230 . . . . . . . . . . . . . 14 (∀𝑖 ∈ (0..^𝑛)(𝑝𝑖) < (𝑝‘(𝑖 + 1)) ↔ ∀𝑗 ∈ (0..^𝑛)(𝑝𝑗) < (𝑝‘(𝑗 + 1)))
8584anbi2i 622 . . . . . . . . . . . . 13 ((((𝑝‘0) = -π ∧ (𝑝𝑛) = π) ∧ ∀𝑖 ∈ (0..^𝑛)(𝑝𝑖) < (𝑝‘(𝑖 + 1))) ↔ (((𝑝‘0) = -π ∧ (𝑝𝑛) = π) ∧ ∀𝑗 ∈ (0..^𝑛)(𝑝𝑗) < (𝑝‘(𝑗 + 1))))
8685a1i 11 . . . . . . . . . . . 12 (𝑝 ∈ (ℝ ↑m (0...𝑛)) → ((((𝑝‘0) = -π ∧ (𝑝𝑛) = π) ∧ ∀𝑖 ∈ (0..^𝑛)(𝑝𝑖) < (𝑝‘(𝑖 + 1))) ↔ (((𝑝‘0) = -π ∧ (𝑝𝑛) = π) ∧ ∀𝑗 ∈ (0..^𝑛)(𝑝𝑗) < (𝑝‘(𝑗 + 1)))))
8786rabbiia 3432 . . . . . . . . . . 11 {𝑝 ∈ (ℝ ↑m (0...𝑛)) ∣ (((𝑝‘0) = -π ∧ (𝑝𝑛) = π) ∧ ∀𝑖 ∈ (0..^𝑛)(𝑝𝑖) < (𝑝‘(𝑖 + 1)))} = {𝑝 ∈ (ℝ ↑m (0...𝑛)) ∣ (((𝑝‘0) = -π ∧ (𝑝𝑛) = π) ∧ ∀𝑗 ∈ (0..^𝑛)(𝑝𝑗) < (𝑝‘(𝑗 + 1)))}
8887mpteq2i 5247 . . . . . . . . . 10 (𝑛 ∈ ℕ ↦ {𝑝 ∈ (ℝ ↑m (0...𝑛)) ∣ (((𝑝‘0) = -π ∧ (𝑝𝑛) = π) ∧ ∀𝑖 ∈ (0..^𝑛)(𝑝𝑖) < (𝑝‘(𝑖 + 1)))}) = (𝑛 ∈ ℕ ↦ {𝑝 ∈ (ℝ ↑m (0...𝑛)) ∣ (((𝑝‘0) = -π ∧ (𝑝𝑛) = π) ∧ ∀𝑗 ∈ (0..^𝑛)(𝑝𝑗) < (𝑝‘(𝑗 + 1)))})
8951, 88eqtri 2756 . . . . . . . . 9 𝑃 = (𝑛 ∈ ℕ ↦ {𝑝 ∈ (ℝ ↑m (0...𝑛)) ∣ (((𝑝‘0) = -π ∧ (𝑝𝑛) = π) ∧ ∀𝑗 ∈ (0..^𝑛)(𝑝𝑗) < (𝑝‘(𝑗 + 1)))})
9052adantr 480 . . . . . . . . 9 ((𝜑𝑖 ∈ (0..^𝑁)) → 𝑀 ∈ ℕ)
9153adantr 480 . . . . . . . . 9 ((𝜑𝑖 ∈ (0..^𝑁)) → 𝑄 ∈ (𝑃𝑀))
92 fourierdlem112.fper . . . . . . . . . 10 ((𝜑𝑥 ∈ ℝ) → (𝐹‘(𝑥 + 𝑇)) = (𝐹𝑥))
9392adantlr 714 . . . . . . . . 9 (((𝜑𝑖 ∈ (0..^𝑁)) ∧ 𝑥 ∈ ℝ) → (𝐹‘(𝑥 + 𝑇)) = (𝐹𝑥))
94 eleq1w 2812 . . . . . . . . . . . . 13 (𝑖 = 𝑗 → (𝑖 ∈ (0..^𝑀) ↔ 𝑗 ∈ (0..^𝑀)))
9594anbi2d 629 . . . . . . . . . . . 12 (𝑖 = 𝑗 → ((𝜑𝑖 ∈ (0..^𝑀)) ↔ (𝜑𝑗 ∈ (0..^𝑀))))
96 fveq2 6891 . . . . . . . . . . . . . . 15 (𝑖 = 𝑗 → (𝑄𝑖) = (𝑄𝑗))
9781fveq2d 6895 . . . . . . . . . . . . . . 15 (𝑖 = 𝑗 → (𝑄‘(𝑖 + 1)) = (𝑄‘(𝑗 + 1)))
9896, 97oveq12d 7432 . . . . . . . . . . . . . 14 (𝑖 = 𝑗 → ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))) = ((𝑄𝑗)(,)(𝑄‘(𝑗 + 1))))
9998reseq2d 5979 . . . . . . . . . . . . 13 (𝑖 = 𝑗 → (𝐹 ↾ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))) = (𝐹 ↾ ((𝑄𝑗)(,)(𝑄‘(𝑗 + 1)))))
10098oveq1d 7429 . . . . . . . . . . . . 13 (𝑖 = 𝑗 → (((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))–cn→ℂ) = (((𝑄𝑗)(,)(𝑄‘(𝑗 + 1)))–cn→ℂ))
10199, 100eleq12d 2823 . . . . . . . . . . . 12 (𝑖 = 𝑗 → ((𝐹 ↾ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))) ∈ (((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))–cn→ℂ) ↔ (𝐹 ↾ ((𝑄𝑗)(,)(𝑄‘(𝑗 + 1)))) ∈ (((𝑄𝑗)(,)(𝑄‘(𝑗 + 1)))–cn→ℂ)))
10295, 101imbi12d 344 . . . . . . . . . . 11 (𝑖 = 𝑗 → (((𝜑𝑖 ∈ (0..^𝑀)) → (𝐹 ↾ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))) ∈ (((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))–cn→ℂ)) ↔ ((𝜑𝑗 ∈ (0..^𝑀)) → (𝐹 ↾ ((𝑄𝑗)(,)(𝑄‘(𝑗 + 1)))) ∈ (((𝑄𝑗)(,)(𝑄‘(𝑗 + 1)))–cn→ℂ))))
103 fourierdlem112.fcn . . . . . . . . . . 11 ((𝜑𝑖 ∈ (0..^𝑀)) → (𝐹 ↾ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))) ∈ (((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))–cn→ℂ))
104102, 103chvarvv 1995 . . . . . . . . . 10 ((𝜑𝑗 ∈ (0..^𝑀)) → (𝐹 ↾ ((𝑄𝑗)(,)(𝑄‘(𝑗 + 1)))) ∈ (((𝑄𝑗)(,)(𝑄‘(𝑗 + 1)))–cn→ℂ))
105104adantlr 714 . . . . . . . . 9 (((𝜑𝑖 ∈ (0..^𝑁)) ∧ 𝑗 ∈ (0..^𝑀)) → (𝐹 ↾ ((𝑄𝑗)(,)(𝑄‘(𝑗 + 1)))) ∈ (((𝑄𝑗)(,)(𝑄‘(𝑗 + 1)))–cn→ℂ))
10657adantr 480 . . . . . . . . 9 ((𝜑𝑖 ∈ (0..^𝑁)) → (-π + 𝑋) ∈ ℝ)
10757rexrd 11288 . . . . . . . . . . 11 (𝜑 → (-π + 𝑋) ∈ ℝ*)
108 pnfxr 11292 . . . . . . . . . . . 12 +∞ ∈ ℝ*
109108a1i 11 . . . . . . . . . . 11 (𝜑 → +∞ ∈ ℝ*)
11058ltpnfd 13127 . . . . . . . . . . 11 (𝜑 → (π + 𝑋) < +∞)
111107, 109, 58, 66, 110eliood 44877 . . . . . . . . . 10 (𝜑 → (π + 𝑋) ∈ ((-π + 𝑋)(,)+∞))
112111adantr 480 . . . . . . . . 9 ((𝜑𝑖 ∈ (0..^𝑁)) → (π + 𝑋) ∈ ((-π + 𝑋)(,)+∞))
113 id 22 . . . . . . . . . . 11 (𝑖 ∈ (0..^𝑁) → 𝑖 ∈ (0..^𝑁))
11472oveq2i 7425 . . . . . . . . . . 11 (0..^𝑁) = (0..^((♯‘({(-π + 𝑋), (π + 𝑋)} ∪ {𝑦 ∈ ((-π + 𝑋)[,](π + 𝑋)) ∣ ∃𝑘 ∈ ℤ (𝑦 + (𝑘 · 𝑇)) ∈ ran 𝑄})) − 1))
115113, 114eleqtrdi 2839 . . . . . . . . . 10 (𝑖 ∈ (0..^𝑁) → 𝑖 ∈ (0..^((♯‘({(-π + 𝑋), (π + 𝑋)} ∪ {𝑦 ∈ ((-π + 𝑋)[,](π + 𝑋)) ∣ ∃𝑘 ∈ ℤ (𝑦 + (𝑘 · 𝑇)) ∈ ran 𝑄})) − 1)))
116115adantl 481 . . . . . . . . 9 ((𝜑𝑖 ∈ (0..^𝑁)) → 𝑖 ∈ (0..^((♯‘({(-π + 𝑋), (π + 𝑋)} ∪ {𝑦 ∈ ((-π + 𝑋)[,](π + 𝑋)) ∣ ∃𝑘 ∈ ℤ (𝑦 + (𝑘 · 𝑇)) ∈ ran 𝑄})) − 1)))
11772oveq2i 7425 . . . . . . . . . . . 12 (0...𝑁) = (0...((♯‘({(-π + 𝑋), (π + 𝑋)} ∪ {𝑦 ∈ ((-π + 𝑋)[,](π + 𝑋)) ∣ ∃𝑘 ∈ ℤ (𝑦 + (𝑘 · 𝑇)) ∈ ran 𝑄})) − 1))
118 isoeq4 7322 . . . . . . . . . . . 12 ((0...𝑁) = (0...((♯‘({(-π + 𝑋), (π + 𝑋)} ∪ {𝑦 ∈ ((-π + 𝑋)[,](π + 𝑋)) ∣ ∃𝑘 ∈ ℤ (𝑦 + (𝑘 · 𝑇)) ∈ ran 𝑄})) − 1)) → (𝑓 Isom < , < ((0...𝑁), ({(-π + 𝑋), (π + 𝑋)} ∪ {𝑦 ∈ ((-π + 𝑋)[,](π + 𝑋)) ∣ ∃𝑘 ∈ ℤ (𝑦 + (𝑘 · 𝑇)) ∈ ran 𝑄})) ↔ 𝑓 Isom < , < ((0...((♯‘({(-π + 𝑋), (π + 𝑋)} ∪ {𝑦 ∈ ((-π + 𝑋)[,](π + 𝑋)) ∣ ∃𝑘 ∈ ℤ (𝑦 + (𝑘 · 𝑇)) ∈ ran 𝑄})) − 1)), ({(-π + 𝑋), (π + 𝑋)} ∪ {𝑦 ∈ ((-π + 𝑋)[,](π + 𝑋)) ∣ ∃𝑘 ∈ ℤ (𝑦 + (𝑘 · 𝑇)) ∈ ran 𝑄}))))
119117, 118ax-mp 5 . . . . . . . . . . 11 (𝑓 Isom < , < ((0...𝑁), ({(-π + 𝑋), (π + 𝑋)} ∪ {𝑦 ∈ ((-π + 𝑋)[,](π + 𝑋)) ∣ ∃𝑘 ∈ ℤ (𝑦 + (𝑘 · 𝑇)) ∈ ran 𝑄})) ↔ 𝑓 Isom < , < ((0...((♯‘({(-π + 𝑋), (π + 𝑋)} ∪ {𝑦 ∈ ((-π + 𝑋)[,](π + 𝑋)) ∣ ∃𝑘 ∈ ℤ (𝑦 + (𝑘 · 𝑇)) ∈ ran 𝑄})) − 1)), ({(-π + 𝑋), (π + 𝑋)} ∪ {𝑦 ∈ ((-π + 𝑋)[,](π + 𝑋)) ∣ ∃𝑘 ∈ ℤ (𝑦 + (𝑘 · 𝑇)) ∈ ran 𝑄})))
120119iotabii 6527 . . . . . . . . . 10 (℩𝑓𝑓 Isom < , < ((0...𝑁), ({(-π + 𝑋), (π + 𝑋)} ∪ {𝑦 ∈ ((-π + 𝑋)[,](π + 𝑋)) ∣ ∃𝑘 ∈ ℤ (𝑦 + (𝑘 · 𝑇)) ∈ ran 𝑄}))) = (℩𝑓𝑓 Isom < , < ((0...((♯‘({(-π + 𝑋), (π + 𝑋)} ∪ {𝑦 ∈ ((-π + 𝑋)[,](π + 𝑋)) ∣ ∃𝑘 ∈ ℤ (𝑦 + (𝑘 · 𝑇)) ∈ ran 𝑄})) − 1)), ({(-π + 𝑋), (π + 𝑋)} ∪ {𝑦 ∈ ((-π + 𝑋)[,](π + 𝑋)) ∣ ∃𝑘 ∈ ℤ (𝑦 + (𝑘 · 𝑇)) ∈ ran 𝑄})))
12173, 120eqtri 2756 . . . . . . . . 9 𝑉 = (℩𝑓𝑓 Isom < , < ((0...((♯‘({(-π + 𝑋), (π + 𝑋)} ∪ {𝑦 ∈ ((-π + 𝑋)[,](π + 𝑋)) ∣ ∃𝑘 ∈ ℤ (𝑦 + (𝑘 · 𝑇)) ∈ ran 𝑄})) − 1)), ({(-π + 𝑋), (π + 𝑋)} ∪ {𝑦 ∈ ((-π + 𝑋)[,](π + 𝑋)) ∣ ∃𝑘 ∈ ℤ (𝑦 + (𝑘 · 𝑇)) ∈ ran 𝑄})))
12279, 89, 50, 90, 91, 93, 105, 106, 112, 116, 121fourierdlem98 45586 . . . . . . . 8 ((𝜑𝑖 ∈ (0..^𝑁)) → (𝐹 ↾ ((𝑉𝑖)(,)(𝑉‘(𝑖 + 1)))) ∈ (((𝑉𝑖)(,)(𝑉‘(𝑖 + 1)))–cn→ℂ))
123 fourierdlem112.fbd . . . . . . . . . 10 (𝜑 → ∃𝑤 ∈ ℝ ∀𝑡 ∈ ℝ (abs‘(𝐹𝑡)) ≤ 𝑤)
124123adantr 480 . . . . . . . . 9 ((𝜑𝑖 ∈ (0..^𝑁)) → ∃𝑤 ∈ ℝ ∀𝑡 ∈ ℝ (abs‘(𝐹𝑡)) ≤ 𝑤)
125 nfra1 3277 . . . . . . . . . . 11 𝑡𝑡 ∈ ℝ (abs‘(𝐹𝑡)) ≤ 𝑤
126 elioore 13380 . . . . . . . . . . . . 13 (𝑡 ∈ ((𝑉𝑖)(,)(𝑉‘(𝑖 + 1))) → 𝑡 ∈ ℝ)
127 rspa 3241 . . . . . . . . . . . . 13 ((∀𝑡 ∈ ℝ (abs‘(𝐹𝑡)) ≤ 𝑤𝑡 ∈ ℝ) → (abs‘(𝐹𝑡)) ≤ 𝑤)
128126, 127sylan2 592 . . . . . . . . . . . 12 ((∀𝑡 ∈ ℝ (abs‘(𝐹𝑡)) ≤ 𝑤𝑡 ∈ ((𝑉𝑖)(,)(𝑉‘(𝑖 + 1)))) → (abs‘(𝐹𝑡)) ≤ 𝑤)
129128ex 412 . . . . . . . . . . 11 (∀𝑡 ∈ ℝ (abs‘(𝐹𝑡)) ≤ 𝑤 → (𝑡 ∈ ((𝑉𝑖)(,)(𝑉‘(𝑖 + 1))) → (abs‘(𝐹𝑡)) ≤ 𝑤))
130125, 129ralrimi 3250 . . . . . . . . . 10 (∀𝑡 ∈ ℝ (abs‘(𝐹𝑡)) ≤ 𝑤 → ∀𝑡 ∈ ((𝑉𝑖)(,)(𝑉‘(𝑖 + 1)))(abs‘(𝐹𝑡)) ≤ 𝑤)
131130reximi 3080 . . . . . . . . 9 (∃𝑤 ∈ ℝ ∀𝑡 ∈ ℝ (abs‘(𝐹𝑡)) ≤ 𝑤 → ∃𝑤 ∈ ℝ ∀𝑡 ∈ ((𝑉𝑖)(,)(𝑉‘(𝑖 + 1)))(abs‘(𝐹𝑡)) ≤ 𝑤)
132124, 131syl 17 . . . . . . . 8 ((𝜑𝑖 ∈ (0..^𝑁)) → ∃𝑤 ∈ ℝ ∀𝑡 ∈ ((𝑉𝑖)(,)(𝑉‘(𝑖 + 1)))(abs‘(𝐹𝑡)) ≤ 𝑤)
133 ssid 4000 . . . . . . . . . . . 12 ℝ ⊆ ℝ
134 dvfre 25876 . . . . . . . . . . . 12 ((𝐹:ℝ⟶ℝ ∧ ℝ ⊆ ℝ) → (ℝ D 𝐹):dom (ℝ D 𝐹)⟶ℝ)
13543, 133, 134sylancl 585 . . . . . . . . . . 11 (𝜑 → (ℝ D 𝐹):dom (ℝ D 𝐹)⟶ℝ)
136135adantr 480 . . . . . . . . . 10 ((𝜑𝑖 ∈ (0..^𝑁)) → (ℝ D 𝐹):dom (ℝ D 𝐹)⟶ℝ)
137 eqid 2728 . . . . . . . . . . . . 13 (ℝ D 𝐹) = (ℝ D 𝐹)
13854a1i 11 . . . . . . . . . . . . 13 ((𝜑𝑖 ∈ (0..^𝑁)) → π ∈ ℝ)
13961a1i 11 . . . . . . . . . . . . 13 ((𝜑𝑖 ∈ (0..^𝑁)) → -π ∈ ℝ)
14098reseq2d 5979 . . . . . . . . . . . . . . . . 17 (𝑖 = 𝑗 → ((ℝ D 𝐹) ↾ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))) = ((ℝ D 𝐹) ↾ ((𝑄𝑗)(,)(𝑄‘(𝑗 + 1)))))
141140, 100eleq12d 2823 . . . . . . . . . . . . . . . 16 (𝑖 = 𝑗 → (((ℝ D 𝐹) ↾ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))) ∈ (((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))–cn→ℂ) ↔ ((ℝ D 𝐹) ↾ ((𝑄𝑗)(,)(𝑄‘(𝑗 + 1)))) ∈ (((𝑄𝑗)(,)(𝑄‘(𝑗 + 1)))–cn→ℂ)))
14295, 141imbi12d 344 . . . . . . . . . . . . . . 15 (𝑖 = 𝑗 → (((𝜑𝑖 ∈ (0..^𝑀)) → ((ℝ D 𝐹) ↾ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))) ∈ (((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))–cn→ℂ)) ↔ ((𝜑𝑗 ∈ (0..^𝑀)) → ((ℝ D 𝐹) ↾ ((𝑄𝑗)(,)(𝑄‘(𝑗 + 1)))) ∈ (((𝑄𝑗)(,)(𝑄‘(𝑗 + 1)))–cn→ℂ))))
143 fourierdlem112.fdvcn . . . . . . . . . . . . . . 15 ((𝜑𝑖 ∈ (0..^𝑀)) → ((ℝ D 𝐹) ↾ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))) ∈ (((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))–cn→ℂ))
144142, 143chvarvv 1995 . . . . . . . . . . . . . 14 ((𝜑𝑗 ∈ (0..^𝑀)) → ((ℝ D 𝐹) ↾ ((𝑄𝑗)(,)(𝑄‘(𝑗 + 1)))) ∈ (((𝑄𝑗)(,)(𝑄‘(𝑗 + 1)))–cn→ℂ))
145144adantlr 714 . . . . . . . . . . . . 13 (((𝜑𝑖 ∈ (0..^𝑁)) ∧ 𝑗 ∈ (0..^𝑀)) → ((ℝ D 𝐹) ↾ ((𝑄𝑗)(,)(𝑄‘(𝑗 + 1)))) ∈ (((𝑄𝑗)(,)(𝑄‘(𝑗 + 1)))–cn→ℂ))
146 fourierdlem112.x . . . . . . . . . . . . . . 15 (𝜑𝑋 ∈ ℝ)
14756, 146readdcld 11267 . . . . . . . . . . . . . 14 (𝜑 → (-π + 𝑋) ∈ ℝ)
148147adantr 480 . . . . . . . . . . . . 13 ((𝜑𝑖 ∈ (0..^𝑁)) → (-π + 𝑋) ∈ ℝ)
149147rexrd 11288 . . . . . . . . . . . . . . 15 (𝜑 → (-π + 𝑋) ∈ ℝ*)
15055, 146readdcld 11267 . . . . . . . . . . . . . . 15 (𝜑 → (π + 𝑋) ∈ ℝ)
15156, 55, 146, 65ltadd1dd 11849 . . . . . . . . . . . . . . 15 (𝜑 → (-π + 𝑋) < (π + 𝑋))
152150ltpnfd 13127 . . . . . . . . . . . . . . 15 (𝜑 → (π + 𝑋) < +∞)
153149, 109, 150, 151, 152eliood 44877 . . . . . . . . . . . . . 14 (𝜑 → (π + 𝑋) ∈ ((-π + 𝑋)(,)+∞))
154153adantr 480 . . . . . . . . . . . . 13 ((𝜑𝑖 ∈ (0..^𝑁)) → (π + 𝑋) ∈ ((-π + 𝑋)(,)+∞))
155 oveq1 7421 . . . . . . . . . . . . . . . . . . . . . 22 (𝑘 = → (𝑘 · 𝑇) = ( · 𝑇))
156155oveq2d 7430 . . . . . . . . . . . . . . . . . . . . 21 (𝑘 = → (𝑦 + (𝑘 · 𝑇)) = (𝑦 + ( · 𝑇)))
157156eleq1d 2814 . . . . . . . . . . . . . . . . . . . 20 (𝑘 = → ((𝑦 + (𝑘 · 𝑇)) ∈ ran 𝑄 ↔ (𝑦 + ( · 𝑇)) ∈ ran 𝑄))
158157cbvrexvw 3231 . . . . . . . . . . . . . . . . . . 19 (∃𝑘 ∈ ℤ (𝑦 + (𝑘 · 𝑇)) ∈ ran 𝑄 ↔ ∃ ∈ ℤ (𝑦 + ( · 𝑇)) ∈ ran 𝑄)
159158rgenw 3061 . . . . . . . . . . . . . . . . . 18 𝑦 ∈ ((-π + 𝑋)[,](π + 𝑋))(∃𝑘 ∈ ℤ (𝑦 + (𝑘 · 𝑇)) ∈ ran 𝑄 ↔ ∃ ∈ ℤ (𝑦 + ( · 𝑇)) ∈ ran 𝑄)
160 rabbi 3458 . . . . . . . . . . . . . . . . . 18 (∀𝑦 ∈ ((-π + 𝑋)[,](π + 𝑋))(∃𝑘 ∈ ℤ (𝑦 + (𝑘 · 𝑇)) ∈ ran 𝑄 ↔ ∃ ∈ ℤ (𝑦 + ( · 𝑇)) ∈ ran 𝑄) ↔ {𝑦 ∈ ((-π + 𝑋)[,](π + 𝑋)) ∣ ∃𝑘 ∈ ℤ (𝑦 + (𝑘 · 𝑇)) ∈ ran 𝑄} = {𝑦 ∈ ((-π + 𝑋)[,](π + 𝑋)) ∣ ∃ ∈ ℤ (𝑦 + ( · 𝑇)) ∈ ran 𝑄})
161159, 160mpbi 229 . . . . . . . . . . . . . . . . 17 {𝑦 ∈ ((-π + 𝑋)[,](π + 𝑋)) ∣ ∃𝑘 ∈ ℤ (𝑦 + (𝑘 · 𝑇)) ∈ ran 𝑄} = {𝑦 ∈ ((-π + 𝑋)[,](π + 𝑋)) ∣ ∃ ∈ ℤ (𝑦 + ( · 𝑇)) ∈ ran 𝑄}
162161uneq2i 4156 . . . . . . . . . . . . . . . 16 ({(-π + 𝑋), (π + 𝑋)} ∪ {𝑦 ∈ ((-π + 𝑋)[,](π + 𝑋)) ∣ ∃𝑘 ∈ ℤ (𝑦 + (𝑘 · 𝑇)) ∈ ran 𝑄}) = ({(-π + 𝑋), (π + 𝑋)} ∪ {𝑦 ∈ ((-π + 𝑋)[,](π + 𝑋)) ∣ ∃ ∈ ℤ (𝑦 + ( · 𝑇)) ∈ ran 𝑄})
163 isoeq5 7323 . . . . . . . . . . . . . . . 16 (({(-π + 𝑋), (π + 𝑋)} ∪ {𝑦 ∈ ((-π + 𝑋)[,](π + 𝑋)) ∣ ∃𝑘 ∈ ℤ (𝑦 + (𝑘 · 𝑇)) ∈ ran 𝑄}) = ({(-π + 𝑋), (π + 𝑋)} ∪ {𝑦 ∈ ((-π + 𝑋)[,](π + 𝑋)) ∣ ∃ ∈ ℤ (𝑦 + ( · 𝑇)) ∈ ran 𝑄}) → (𝑓 Isom < , < ((0...((♯‘({(-π + 𝑋), (π + 𝑋)} ∪ {𝑦 ∈ ((-π + 𝑋)[,](π + 𝑋)) ∣ ∃𝑘 ∈ ℤ (𝑦 + (𝑘 · 𝑇)) ∈ ran 𝑄})) − 1)), ({(-π + 𝑋), (π + 𝑋)} ∪ {𝑦 ∈ ((-π + 𝑋)[,](π + 𝑋)) ∣ ∃𝑘 ∈ ℤ (𝑦 + (𝑘 · 𝑇)) ∈ ran 𝑄})) ↔ 𝑓 Isom < , < ((0...((♯‘({(-π + 𝑋), (π + 𝑋)} ∪ {𝑦 ∈ ((-π + 𝑋)[,](π + 𝑋)) ∣ ∃𝑘 ∈ ℤ (𝑦 + (𝑘 · 𝑇)) ∈ ran 𝑄})) − 1)), ({(-π + 𝑋), (π + 𝑋)} ∪ {𝑦 ∈ ((-π + 𝑋)[,](π + 𝑋)) ∣ ∃ ∈ ℤ (𝑦 + ( · 𝑇)) ∈ ran 𝑄}))))
164162, 163ax-mp 5 . . . . . . . . . . . . . . 15 (𝑓 Isom < , < ((0...((♯‘({(-π + 𝑋), (π + 𝑋)} ∪ {𝑦 ∈ ((-π + 𝑋)[,](π + 𝑋)) ∣ ∃𝑘 ∈ ℤ (𝑦 + (𝑘 · 𝑇)) ∈ ran 𝑄})) − 1)), ({(-π + 𝑋), (π + 𝑋)} ∪ {𝑦 ∈ ((-π + 𝑋)[,](π + 𝑋)) ∣ ∃𝑘 ∈ ℤ (𝑦 + (𝑘 · 𝑇)) ∈ ran 𝑄})) ↔ 𝑓 Isom < , < ((0...((♯‘({(-π + 𝑋), (π + 𝑋)} ∪ {𝑦 ∈ ((-π + 𝑋)[,](π + 𝑋)) ∣ ∃𝑘 ∈ ℤ (𝑦 + (𝑘 · 𝑇)) ∈ ran 𝑄})) − 1)), ({(-π + 𝑋), (π + 𝑋)} ∪ {𝑦 ∈ ((-π + 𝑋)[,](π + 𝑋)) ∣ ∃ ∈ ℤ (𝑦 + ( · 𝑇)) ∈ ran 𝑄})))
165164iotabii 6527 . . . . . . . . . . . . . 14 (℩𝑓𝑓 Isom < , < ((0...((♯‘({(-π + 𝑋), (π + 𝑋)} ∪ {𝑦 ∈ ((-π + 𝑋)[,](π + 𝑋)) ∣ ∃𝑘 ∈ ℤ (𝑦 + (𝑘 · 𝑇)) ∈ ran 𝑄})) − 1)), ({(-π + 𝑋), (π + 𝑋)} ∪ {𝑦 ∈ ((-π + 𝑋)[,](π + 𝑋)) ∣ ∃𝑘 ∈ ℤ (𝑦 + (𝑘 · 𝑇)) ∈ ran 𝑄}))) = (℩𝑓𝑓 Isom < , < ((0...((♯‘({(-π + 𝑋), (π + 𝑋)} ∪ {𝑦 ∈ ((-π + 𝑋)[,](π + 𝑋)) ∣ ∃𝑘 ∈ ℤ (𝑦 + (𝑘 · 𝑇)) ∈ ran 𝑄})) − 1)), ({(-π + 𝑋), (π + 𝑋)} ∪ {𝑦 ∈ ((-π + 𝑋)[,](π + 𝑋)) ∣ ∃ ∈ ℤ (𝑦 + ( · 𝑇)) ∈ ran 𝑄})))
166121, 165eqtri 2756 . . . . . . . . . . . . 13 𝑉 = (℩𝑓𝑓 Isom < , < ((0...((♯‘({(-π + 𝑋), (π + 𝑋)} ∪ {𝑦 ∈ ((-π + 𝑋)[,](π + 𝑋)) ∣ ∃𝑘 ∈ ℤ (𝑦 + (𝑘 · 𝑇)) ∈ ran 𝑄})) − 1)), ({(-π + 𝑋), (π + 𝑋)} ∪ {𝑦 ∈ ((-π + 𝑋)[,](π + 𝑋)) ∣ ∃ ∈ ℤ (𝑦 + ( · 𝑇)) ∈ ran 𝑄})))
167 eleq1w 2812 . . . . . . . . . . . . . . 15 (𝑣 = 𝑢 → (𝑣 ∈ dom (ℝ D 𝐹) ↔ 𝑢 ∈ dom (ℝ D 𝐹)))
168 fveq2 6891 . . . . . . . . . . . . . . 15 (𝑣 = 𝑢 → ((ℝ D 𝐹)‘𝑣) = ((ℝ D 𝐹)‘𝑢))
169167, 168ifbieq1d 4548 . . . . . . . . . . . . . 14 (𝑣 = 𝑢 → if(𝑣 ∈ dom (ℝ D 𝐹), ((ℝ D 𝐹)‘𝑣), 0) = if(𝑢 ∈ dom (ℝ D 𝐹), ((ℝ D 𝐹)‘𝑢), 0))
170169cbvmptv 5255 . . . . . . . . . . . . 13 (𝑣 ∈ ℝ ↦ if(𝑣 ∈ dom (ℝ D 𝐹), ((ℝ D 𝐹)‘𝑣), 0)) = (𝑢 ∈ ℝ ↦ if(𝑢 ∈ dom (ℝ D 𝐹), ((ℝ D 𝐹)‘𝑢), 0))
17179, 137, 89, 138, 139, 50, 90, 91, 93, 145, 148, 154, 116, 166, 170fourierdlem97 45585 . . . . . . . . . . . 12 ((𝜑𝑖 ∈ (0..^𝑁)) → ((ℝ D 𝐹) ↾ ((𝑉𝑖)(,)(𝑉‘(𝑖 + 1)))) ∈ (((𝑉𝑖)(,)(𝑉‘(𝑖 + 1)))–cn→ℂ))
172 cncff 24806 . . . . . . . . . . . 12 (((ℝ D 𝐹) ↾ ((𝑉𝑖)(,)(𝑉‘(𝑖 + 1)))) ∈ (((𝑉𝑖)(,)(𝑉‘(𝑖 + 1)))–cn→ℂ) → ((ℝ D 𝐹) ↾ ((𝑉𝑖)(,)(𝑉‘(𝑖 + 1)))):((𝑉𝑖)(,)(𝑉‘(𝑖 + 1)))⟶ℂ)
173 fdm 6725 . . . . . . . . . . . 12 (((ℝ D 𝐹) ↾ ((𝑉𝑖)(,)(𝑉‘(𝑖 + 1)))):((𝑉𝑖)(,)(𝑉‘(𝑖 + 1)))⟶ℂ → dom ((ℝ D 𝐹) ↾ ((𝑉𝑖)(,)(𝑉‘(𝑖 + 1)))) = ((𝑉𝑖)(,)(𝑉‘(𝑖 + 1))))
174171, 172, 1733syl 18 . . . . . . . . . . 11 ((𝜑𝑖 ∈ (0..^𝑁)) → dom ((ℝ D 𝐹) ↾ ((𝑉𝑖)(,)(𝑉‘(𝑖 + 1)))) = ((𝑉𝑖)(,)(𝑉‘(𝑖 + 1))))
175 ssdmres 6002 . . . . . . . . . . 11 (((𝑉𝑖)(,)(𝑉‘(𝑖 + 1))) ⊆ dom (ℝ D 𝐹) ↔ dom ((ℝ D 𝐹) ↾ ((𝑉𝑖)(,)(𝑉‘(𝑖 + 1)))) = ((𝑉𝑖)(,)(𝑉‘(𝑖 + 1))))
176174, 175sylibr 233 . . . . . . . . . 10 ((𝜑𝑖 ∈ (0..^𝑁)) → ((𝑉𝑖)(,)(𝑉‘(𝑖 + 1))) ⊆ dom (ℝ D 𝐹))
177136, 176fssresd 6758 . . . . . . . . 9 ((𝜑𝑖 ∈ (0..^𝑁)) → ((ℝ D 𝐹) ↾ ((𝑉𝑖)(,)(𝑉‘(𝑖 + 1)))):((𝑉𝑖)(,)(𝑉‘(𝑖 + 1)))⟶ℝ)
178 ax-resscn 11189 . . . . . . . . . . 11 ℝ ⊆ ℂ
179178a1i 11 . . . . . . . . . 10 ((𝜑𝑖 ∈ (0..^𝑁)) → ℝ ⊆ ℂ)
180 cncfcdm 24811 . . . . . . . . . 10 ((ℝ ⊆ ℂ ∧ ((ℝ D 𝐹) ↾ ((𝑉𝑖)(,)(𝑉‘(𝑖 + 1)))) ∈ (((𝑉𝑖)(,)(𝑉‘(𝑖 + 1)))–cn→ℂ)) → (((ℝ D 𝐹) ↾ ((𝑉𝑖)(,)(𝑉‘(𝑖 + 1)))) ∈ (((𝑉𝑖)(,)(𝑉‘(𝑖 + 1)))–cn→ℝ) ↔ ((ℝ D 𝐹) ↾ ((𝑉𝑖)(,)(𝑉‘(𝑖 + 1)))):((𝑉𝑖)(,)(𝑉‘(𝑖 + 1)))⟶ℝ))
181179, 171, 180syl2anc 583 . . . . . . . . 9 ((𝜑𝑖 ∈ (0..^𝑁)) → (((ℝ D 𝐹) ↾ ((𝑉𝑖)(,)(𝑉‘(𝑖 + 1)))) ∈ (((𝑉𝑖)(,)(𝑉‘(𝑖 + 1)))–cn→ℝ) ↔ ((ℝ D 𝐹) ↾ ((𝑉𝑖)(,)(𝑉‘(𝑖 + 1)))):((𝑉𝑖)(,)(𝑉‘(𝑖 + 1)))⟶ℝ))
182177, 181mpbird 257 . . . . . . . 8 ((𝜑𝑖 ∈ (0..^𝑁)) → ((ℝ D 𝐹) ↾ ((𝑉𝑖)(,)(𝑉‘(𝑖 + 1)))) ∈ (((𝑉𝑖)(,)(𝑉‘(𝑖 + 1)))–cn→ℝ))
183 fourierdlem112.fdvbd . . . . . . . . . . 11 (𝜑 → ∃𝑧 ∈ ℝ ∀𝑡 ∈ dom (ℝ D 𝐹)(abs‘((ℝ D 𝐹)‘𝑡)) ≤ 𝑧)
184183adantr 480 . . . . . . . . . 10 ((𝜑𝑖 ∈ (0..^𝑁)) → ∃𝑧 ∈ ℝ ∀𝑡 ∈ dom (ℝ D 𝐹)(abs‘((ℝ D 𝐹)‘𝑡)) ≤ 𝑧)
185 nfv 1910 . . . . . . . . . . . . . 14 𝑡(𝜑𝑖 ∈ (0..^𝑁))
186 nfra1 3277 . . . . . . . . . . . . . 14 𝑡𝑡 ∈ dom (ℝ D 𝐹)(abs‘((ℝ D 𝐹)‘𝑡)) ≤ 𝑧
187185, 186nfan 1895 . . . . . . . . . . . . 13 𝑡((𝜑𝑖 ∈ (0..^𝑁)) ∧ ∀𝑡 ∈ dom (ℝ D 𝐹)(abs‘((ℝ D 𝐹)‘𝑡)) ≤ 𝑧)
188 fvres 6910 . . . . . . . . . . . . . . . . . 18 (𝑡 ∈ ((𝑉𝑖)(,)(𝑉‘(𝑖 + 1))) → (((ℝ D 𝐹) ↾ ((𝑉𝑖)(,)(𝑉‘(𝑖 + 1))))‘𝑡) = ((ℝ D 𝐹)‘𝑡))
189188adantl 481 . . . . . . . . . . . . . . . . 17 (((𝜑𝑖 ∈ (0..^𝑁)) ∧ 𝑡 ∈ ((𝑉𝑖)(,)(𝑉‘(𝑖 + 1)))) → (((ℝ D 𝐹) ↾ ((𝑉𝑖)(,)(𝑉‘(𝑖 + 1))))‘𝑡) = ((ℝ D 𝐹)‘𝑡))
190189fveq2d 6895 . . . . . . . . . . . . . . . 16 (((𝜑𝑖 ∈ (0..^𝑁)) ∧ 𝑡 ∈ ((𝑉𝑖)(,)(𝑉‘(𝑖 + 1)))) → (abs‘(((ℝ D 𝐹) ↾ ((𝑉𝑖)(,)(𝑉‘(𝑖 + 1))))‘𝑡)) = (abs‘((ℝ D 𝐹)‘𝑡)))
191190adantlr 714 . . . . . . . . . . . . . . 15 ((((𝜑𝑖 ∈ (0..^𝑁)) ∧ ∀𝑡 ∈ dom (ℝ D 𝐹)(abs‘((ℝ D 𝐹)‘𝑡)) ≤ 𝑧) ∧ 𝑡 ∈ ((𝑉𝑖)(,)(𝑉‘(𝑖 + 1)))) → (abs‘(((ℝ D 𝐹) ↾ ((𝑉𝑖)(,)(𝑉‘(𝑖 + 1))))‘𝑡)) = (abs‘((ℝ D 𝐹)‘𝑡)))
192 simplr 768 . . . . . . . . . . . . . . . 16 ((((𝜑𝑖 ∈ (0..^𝑁)) ∧ ∀𝑡 ∈ dom (ℝ D 𝐹)(abs‘((ℝ D 𝐹)‘𝑡)) ≤ 𝑧) ∧ 𝑡 ∈ ((𝑉𝑖)(,)(𝑉‘(𝑖 + 1)))) → ∀𝑡 ∈ dom (ℝ D 𝐹)(abs‘((ℝ D 𝐹)‘𝑡)) ≤ 𝑧)
193176sselda 3978 . . . . . . . . . . . . . . . . 17 (((𝜑𝑖 ∈ (0..^𝑁)) ∧ 𝑡 ∈ ((𝑉𝑖)(,)(𝑉‘(𝑖 + 1)))) → 𝑡 ∈ dom (ℝ D 𝐹))
194193adantlr 714 . . . . . . . . . . . . . . . 16 ((((𝜑𝑖 ∈ (0..^𝑁)) ∧ ∀𝑡 ∈ dom (ℝ D 𝐹)(abs‘((ℝ D 𝐹)‘𝑡)) ≤ 𝑧) ∧ 𝑡 ∈ ((𝑉𝑖)(,)(𝑉‘(𝑖 + 1)))) → 𝑡 ∈ dom (ℝ D 𝐹))
195 rspa 3241 . . . . . . . . . . . . . . . 16 ((∀𝑡 ∈ dom (ℝ D 𝐹)(abs‘((ℝ D 𝐹)‘𝑡)) ≤ 𝑧𝑡 ∈ dom (ℝ D 𝐹)) → (abs‘((ℝ D 𝐹)‘𝑡)) ≤ 𝑧)
196192, 194, 195syl2anc 583 . . . . . . . . . . . . . . 15 ((((𝜑𝑖 ∈ (0..^𝑁)) ∧ ∀𝑡 ∈ dom (ℝ D 𝐹)(abs‘((ℝ D 𝐹)‘𝑡)) ≤ 𝑧) ∧ 𝑡 ∈ ((𝑉𝑖)(,)(𝑉‘(𝑖 + 1)))) → (abs‘((ℝ D 𝐹)‘𝑡)) ≤ 𝑧)
197191, 196eqbrtrd 5164 . . . . . . . . . . . . . 14 ((((𝜑𝑖 ∈ (0..^𝑁)) ∧ ∀𝑡 ∈ dom (ℝ D 𝐹)(abs‘((ℝ D 𝐹)‘𝑡)) ≤ 𝑧) ∧ 𝑡 ∈ ((𝑉𝑖)(,)(𝑉‘(𝑖 + 1)))) → (abs‘(((ℝ D 𝐹) ↾ ((𝑉𝑖)(,)(𝑉‘(𝑖 + 1))))‘𝑡)) ≤ 𝑧)
198197ex 412 . . . . . . . . . . . . 13 (((𝜑𝑖 ∈ (0..^𝑁)) ∧ ∀𝑡 ∈ dom (ℝ D 𝐹)(abs‘((ℝ D 𝐹)‘𝑡)) ≤ 𝑧) → (𝑡 ∈ ((𝑉𝑖)(,)(𝑉‘(𝑖 + 1))) → (abs‘(((ℝ D 𝐹) ↾ ((𝑉𝑖)(,)(𝑉‘(𝑖 + 1))))‘𝑡)) ≤ 𝑧))
199187, 198ralrimi 3250 . . . . . . . . . . . 12 (((𝜑𝑖 ∈ (0..^𝑁)) ∧ ∀𝑡 ∈ dom (ℝ D 𝐹)(abs‘((ℝ D 𝐹)‘𝑡)) ≤ 𝑧) → ∀𝑡 ∈ ((𝑉𝑖)(,)(𝑉‘(𝑖 + 1)))(abs‘(((ℝ D 𝐹) ↾ ((𝑉𝑖)(,)(𝑉‘(𝑖 + 1))))‘𝑡)) ≤ 𝑧)
200199ex 412 . . . . . . . . . . 11 ((𝜑𝑖 ∈ (0..^𝑁)) → (∀𝑡 ∈ dom (ℝ D 𝐹)(abs‘((ℝ D 𝐹)‘𝑡)) ≤ 𝑧 → ∀𝑡 ∈ ((𝑉𝑖)(,)(𝑉‘(𝑖 + 1)))(abs‘(((ℝ D 𝐹) ↾ ((𝑉𝑖)(,)(𝑉‘(𝑖 + 1))))‘𝑡)) ≤ 𝑧))
201200reximdv 3166 . . . . . . . . . 10 ((𝜑𝑖 ∈ (0..^𝑁)) → (∃𝑧 ∈ ℝ ∀𝑡 ∈ dom (ℝ D 𝐹)(abs‘((ℝ D 𝐹)‘𝑡)) ≤ 𝑧 → ∃𝑧 ∈ ℝ ∀𝑡 ∈ ((𝑉𝑖)(,)(𝑉‘(𝑖 + 1)))(abs‘(((ℝ D 𝐹) ↾ ((𝑉𝑖)(,)(𝑉‘(𝑖 + 1))))‘𝑡)) ≤ 𝑧))
202184, 201mpd 15 . . . . . . . . 9 ((𝜑𝑖 ∈ (0..^𝑁)) → ∃𝑧 ∈ ℝ ∀𝑡 ∈ ((𝑉𝑖)(,)(𝑉‘(𝑖 + 1)))(abs‘(((ℝ D 𝐹) ↾ ((𝑉𝑖)(,)(𝑉‘(𝑖 + 1))))‘𝑡)) ≤ 𝑧)
203 nfra1 3277 . . . . . . . . . . . 12 𝑡𝑡 ∈ ((𝑉𝑖)(,)(𝑉‘(𝑖 + 1)))(abs‘(((ℝ D 𝐹) ↾ ((𝑉𝑖)(,)(𝑉‘(𝑖 + 1))))‘𝑡)) ≤ 𝑧
204188eqcomd 2734 . . . . . . . . . . . . . . . 16 (𝑡 ∈ ((𝑉𝑖)(,)(𝑉‘(𝑖 + 1))) → ((ℝ D 𝐹)‘𝑡) = (((ℝ D 𝐹) ↾ ((𝑉𝑖)(,)(𝑉‘(𝑖 + 1))))‘𝑡))
205204fveq2d 6895 . . . . . . . . . . . . . . 15 (𝑡 ∈ ((𝑉𝑖)(,)(𝑉‘(𝑖 + 1))) → (abs‘((ℝ D 𝐹)‘𝑡)) = (abs‘(((ℝ D 𝐹) ↾ ((𝑉𝑖)(,)(𝑉‘(𝑖 + 1))))‘𝑡)))
206205adantl 481 . . . . . . . . . . . . . 14 ((∀𝑡 ∈ ((𝑉𝑖)(,)(𝑉‘(𝑖 + 1)))(abs‘(((ℝ D 𝐹) ↾ ((𝑉𝑖)(,)(𝑉‘(𝑖 + 1))))‘𝑡)) ≤ 𝑧𝑡 ∈ ((𝑉𝑖)(,)(𝑉‘(𝑖 + 1)))) → (abs‘((ℝ D 𝐹)‘𝑡)) = (abs‘(((ℝ D 𝐹) ↾ ((𝑉𝑖)(,)(𝑉‘(𝑖 + 1))))‘𝑡)))
207 rspa 3241 . . . . . . . . . . . . . 14 ((∀𝑡 ∈ ((𝑉𝑖)(,)(𝑉‘(𝑖 + 1)))(abs‘(((ℝ D 𝐹) ↾ ((𝑉𝑖)(,)(𝑉‘(𝑖 + 1))))‘𝑡)) ≤ 𝑧𝑡 ∈ ((𝑉𝑖)(,)(𝑉‘(𝑖 + 1)))) → (abs‘(((ℝ D 𝐹) ↾ ((𝑉𝑖)(,)(𝑉‘(𝑖 + 1))))‘𝑡)) ≤ 𝑧)
208206, 207eqbrtrd 5164 . . . . . . . . . . . . 13 ((∀𝑡 ∈ ((𝑉𝑖)(,)(𝑉‘(𝑖 + 1)))(abs‘(((ℝ D 𝐹) ↾ ((𝑉𝑖)(,)(𝑉‘(𝑖 + 1))))‘𝑡)) ≤ 𝑧𝑡 ∈ ((𝑉𝑖)(,)(𝑉‘(𝑖 + 1)))) → (abs‘((ℝ D 𝐹)‘𝑡)) ≤ 𝑧)
209208ex 412 . . . . . . . . . . . 12 (∀𝑡 ∈ ((𝑉𝑖)(,)(𝑉‘(𝑖 + 1)))(abs‘(((ℝ D 𝐹) ↾ ((𝑉𝑖)(,)(𝑉‘(𝑖 + 1))))‘𝑡)) ≤ 𝑧 → (𝑡 ∈ ((𝑉𝑖)(,)(𝑉‘(𝑖 + 1))) → (abs‘((ℝ D 𝐹)‘𝑡)) ≤ 𝑧))
210203, 209ralrimi 3250 . . . . . . . . . . 11 (∀𝑡 ∈ ((𝑉𝑖)(,)(𝑉‘(𝑖 + 1)))(abs‘(((ℝ D 𝐹) ↾ ((𝑉𝑖)(,)(𝑉‘(𝑖 + 1))))‘𝑡)) ≤ 𝑧 → ∀𝑡 ∈ ((𝑉𝑖)(,)(𝑉‘(𝑖 + 1)))(abs‘((ℝ D 𝐹)‘𝑡)) ≤ 𝑧)
211210a1i 11 . . . . . . . . . 10 ((𝜑𝑖 ∈ (0..^𝑁)) → (∀𝑡 ∈ ((𝑉𝑖)(,)(𝑉‘(𝑖 + 1)))(abs‘(((ℝ D 𝐹) ↾ ((𝑉𝑖)(,)(𝑉‘(𝑖 + 1))))‘𝑡)) ≤ 𝑧 → ∀𝑡 ∈ ((𝑉𝑖)(,)(𝑉‘(𝑖 + 1)))(abs‘((ℝ D 𝐹)‘𝑡)) ≤ 𝑧))
212211reximdv 3166 . . . . . . . . 9 ((𝜑𝑖 ∈ (0..^𝑁)) → (∃𝑧 ∈ ℝ ∀𝑡 ∈ ((𝑉𝑖)(,)(𝑉‘(𝑖 + 1)))(abs‘(((ℝ D 𝐹) ↾ ((𝑉𝑖)(,)(𝑉‘(𝑖 + 1))))‘𝑡)) ≤ 𝑧 → ∃𝑧 ∈ ℝ ∀𝑡 ∈ ((𝑉𝑖)(,)(𝑉‘(𝑖 + 1)))(abs‘((ℝ D 𝐹)‘𝑡)) ≤ 𝑧))
213202, 212mpd 15 . . . . . . . 8 ((𝜑𝑖 ∈ (0..^𝑁)) → ∃𝑧 ∈ ℝ ∀𝑡 ∈ ((𝑉𝑖)(,)(𝑉‘(𝑖 + 1)))(abs‘((ℝ D 𝐹)‘𝑡)) ≤ 𝑧)
214 nfv 1910 . . . . . . . . . . . 12 𝑖(𝜑𝑗 ∈ (0..^𝑀))
215 nfcsb1v 3915 . . . . . . . . . . . . 13 𝑖𝑗 / 𝑖𝐶
216215nfel1 2915 . . . . . . . . . . . 12 𝑖𝑗 / 𝑖𝐶 ∈ ((𝐹 ↾ ((𝑄𝑗)(,)(𝑄‘(𝑗 + 1)))) lim (𝑄𝑗))
217214, 216nfim 1892 . . . . . . . . . . 11 𝑖((𝜑𝑗 ∈ (0..^𝑀)) → 𝑗 / 𝑖𝐶 ∈ ((𝐹 ↾ ((𝑄𝑗)(,)(𝑄‘(𝑗 + 1)))) lim (𝑄𝑗)))
218 csbeq1a 3904 . . . . . . . . . . . . 13 (𝑖 = 𝑗𝐶 = 𝑗 / 𝑖𝐶)
21999, 96oveq12d 7432 . . . . . . . . . . . . 13 (𝑖 = 𝑗 → ((𝐹 ↾ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))) lim (𝑄𝑖)) = ((𝐹 ↾ ((𝑄𝑗)(,)(𝑄‘(𝑗 + 1)))) lim (𝑄𝑗)))
220218, 219eleq12d 2823 . . . . . . . . . . . 12 (𝑖 = 𝑗 → (𝐶 ∈ ((𝐹 ↾ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))) lim (𝑄𝑖)) ↔ 𝑗 / 𝑖𝐶 ∈ ((𝐹 ↾ ((𝑄𝑗)(,)(𝑄‘(𝑗 + 1)))) lim (𝑄𝑗))))
22195, 220imbi12d 344 . . . . . . . . . . 11 (𝑖 = 𝑗 → (((𝜑𝑖 ∈ (0..^𝑀)) → 𝐶 ∈ ((𝐹 ↾ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))) lim (𝑄𝑖))) ↔ ((𝜑𝑗 ∈ (0..^𝑀)) → 𝑗 / 𝑖𝐶 ∈ ((𝐹 ↾ ((𝑄𝑗)(,)(𝑄‘(𝑗 + 1)))) lim (𝑄𝑗)))))
222 fourierdlem112.c . . . . . . . . . . 11 ((𝜑𝑖 ∈ (0..^𝑀)) → 𝐶 ∈ ((𝐹 ↾ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))) lim (𝑄𝑖)))
223217, 221, 222chvarfv 2229 . . . . . . . . . 10 ((𝜑𝑗 ∈ (0..^𝑀)) → 𝑗 / 𝑖𝐶 ∈ ((𝐹 ↾ ((𝑄𝑗)(,)(𝑄‘(𝑗 + 1)))) lim (𝑄𝑗)))
224223adantlr 714 . . . . . . . . 9 (((𝜑𝑖 ∈ (0..^𝑁)) ∧ 𝑗 ∈ (0..^𝑀)) → 𝑗 / 𝑖𝐶 ∈ ((𝐹 ↾ ((𝑄𝑗)(,)(𝑄‘(𝑗 + 1)))) lim (𝑄𝑗)))
22579, 89, 50, 90, 91, 93, 105, 224, 106, 112, 116, 121fourierdlem96 45584 . . . . . . . 8 ((𝜑𝑖 ∈ (0..^𝑁)) → if(((𝑑 ∈ (-π(,]π) ↦ if(𝑑 = π, -π, 𝑑))‘((𝑐 ∈ ℝ ↦ (𝑐 + ((⌊‘((π − 𝑐) / 𝑇)) · 𝑇)))‘(𝑉𝑖))) = (𝑄‘((𝑦 ∈ ℝ ↦ sup({𝑓 ∈ (0..^𝑀) ∣ (𝑄𝑓) ≤ ((𝑑 ∈ (-π(,]π) ↦ if(𝑑 = π, -π, 𝑑))‘((𝑐 ∈ ℝ ↦ (𝑐 + ((⌊‘((π − 𝑐) / 𝑇)) · 𝑇)))‘𝑦))}, ℝ, < ))‘(𝑉𝑖))), ((𝑗 ∈ (0..^𝑀) ↦ 𝑗 / 𝑖𝐶)‘((𝑦 ∈ ℝ ↦ sup({𝑓 ∈ (0..^𝑀) ∣ (𝑄𝑓) ≤ ((𝑑 ∈ (-π(,]π) ↦ if(𝑑 = π, -π, 𝑑))‘((𝑐 ∈ ℝ ↦ (𝑐 + ((⌊‘((π − 𝑐) / 𝑇)) · 𝑇)))‘𝑦))}, ℝ, < ))‘(𝑉𝑖))), (𝐹‘((𝑑 ∈ (-π(,]π) ↦ if(𝑑 = π, -π, 𝑑))‘((𝑐 ∈ ℝ ↦ (𝑐 + ((⌊‘((π − 𝑐) / 𝑇)) · 𝑇)))‘(𝑉𝑖))))) ∈ ((𝐹 ↾ ((𝑉𝑖)(,)(𝑉‘(𝑖 + 1)))) lim (𝑉𝑖)))
226 nfcsb1v 3915 . . . . . . . . . . . . 13 𝑖𝑗 / 𝑖𝑈
227226nfel1 2915 . . . . . . . . . . . 12 𝑖𝑗 / 𝑖𝑈 ∈ ((𝐹 ↾ ((𝑄𝑗)(,)(𝑄‘(𝑗 + 1)))) lim (𝑄‘(𝑗 + 1)))
228214, 227nfim 1892 . . . . . . . . . . 11 𝑖((𝜑𝑗 ∈ (0..^𝑀)) → 𝑗 / 𝑖𝑈 ∈ ((𝐹 ↾ ((𝑄𝑗)(,)(𝑄‘(𝑗 + 1)))) lim (𝑄‘(𝑗 + 1))))
229 csbeq1a 3904 . . . . . . . . . . . . 13 (𝑖 = 𝑗𝑈 = 𝑗 / 𝑖𝑈)
23099, 97oveq12d 7432 . . . . . . . . . . . . 13 (𝑖 = 𝑗 → ((𝐹 ↾ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))) lim (𝑄‘(𝑖 + 1))) = ((𝐹 ↾ ((𝑄𝑗)(,)(𝑄‘(𝑗 + 1)))) lim (𝑄‘(𝑗 + 1))))
231229, 230eleq12d 2823 . . . . . . . . . . . 12 (𝑖 = 𝑗 → (𝑈 ∈ ((𝐹 ↾ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))) lim (𝑄‘(𝑖 + 1))) ↔ 𝑗 / 𝑖𝑈 ∈ ((𝐹 ↾ ((𝑄𝑗)(,)(𝑄‘(𝑗 + 1)))) lim (𝑄‘(𝑗 + 1)))))
23295, 231imbi12d 344 . . . . . . . . . . 11 (𝑖 = 𝑗 → (((𝜑𝑖 ∈ (0..^𝑀)) → 𝑈 ∈ ((𝐹 ↾ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))) lim (𝑄‘(𝑖 + 1)))) ↔ ((𝜑𝑗 ∈ (0..^𝑀)) → 𝑗 / 𝑖𝑈 ∈ ((𝐹 ↾ ((𝑄𝑗)(,)(𝑄‘(𝑗 + 1)))) lim (𝑄‘(𝑗 + 1))))))
233 fourierdlem112.u . . . . . . . . . . 11 ((𝜑𝑖 ∈ (0..^𝑀)) → 𝑈 ∈ ((𝐹 ↾ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))) lim (𝑄‘(𝑖 + 1))))
234228, 232, 233chvarfv 2229 . . . . . . . . . 10 ((𝜑𝑗 ∈ (0..^𝑀)) → 𝑗 / 𝑖𝑈 ∈ ((𝐹 ↾ ((𝑄𝑗)(,)(𝑄‘(𝑗 + 1)))) lim (𝑄‘(𝑗 + 1))))
235234adantlr 714 . . . . . . . . 9 (((𝜑𝑖 ∈ (0..^𝑁)) ∧ 𝑗 ∈ (0..^𝑀)) → 𝑗 / 𝑖𝑈 ∈ ((𝐹 ↾ ((𝑄𝑗)(,)(𝑄‘(𝑗 + 1)))) lim (𝑄‘(𝑗 + 1))))
23679, 89, 50, 90, 91, 93, 105, 235, 148, 154, 116, 121fourierdlem99 45587 . . . . . . . 8 ((𝜑𝑖 ∈ (0..^𝑁)) → if(((𝑒 ∈ ℝ ↦ (𝑒 + ((⌊‘((π − 𝑒) / 𝑇)) · 𝑇)))‘(𝑉‘(𝑖 + 1))) = (𝑄‘(((𝑦 ∈ ℝ ↦ sup({ ∈ (0..^𝑀) ∣ (𝑄) ≤ ((𝑔 ∈ (-π(,]π) ↦ if(𝑔 = π, -π, 𝑔))‘((𝑒 ∈ ℝ ↦ (𝑒 + ((⌊‘((π − 𝑒) / 𝑇)) · 𝑇)))‘𝑦))}, ℝ, < ))‘(𝑉𝑖)) + 1)), ((𝑗 ∈ (0..^𝑀) ↦ 𝑗 / 𝑖𝑈)‘((𝑦 ∈ ℝ ↦ sup({ ∈ (0..^𝑀) ∣ (𝑄) ≤ ((𝑔 ∈ (-π(,]π) ↦ if(𝑔 = π, -π, 𝑔))‘((𝑒 ∈ ℝ ↦ (𝑒 + ((⌊‘((π − 𝑒) / 𝑇)) · 𝑇)))‘𝑦))}, ℝ, < ))‘(𝑉𝑖))), (𝐹‘((𝑒 ∈ ℝ ↦ (𝑒 + ((⌊‘((π − 𝑒) / 𝑇)) · 𝑇)))‘(𝑉‘(𝑖 + 1))))) ∈ ((𝐹 ↾ ((𝑉𝑖)(,)(𝑉‘(𝑖 + 1)))) lim (𝑉‘(𝑖 + 1))))
237 eqeq1 2732 . . . . . . . . . 10 (𝑔 = 𝑠 → (𝑔 = 0 ↔ 𝑠 = 0))
238 oveq2 7422 . . . . . . . . . . . . 13 (𝑔 = 𝑠 → (𝑋 + 𝑔) = (𝑋 + 𝑠))
239238fveq2d 6895 . . . . . . . . . . . 12 (𝑔 = 𝑠 → (𝐹‘(𝑋 + 𝑔)) = (𝐹‘(𝑋 + 𝑠)))
240 breq2 5146 . . . . . . . . . . . . 13 (𝑔 = 𝑠 → (0 < 𝑔 ↔ 0 < 𝑠))
241240ifbid 4547 . . . . . . . . . . . 12 (𝑔 = 𝑠 → if(0 < 𝑔, 𝑅, 𝐿) = if(0 < 𝑠, 𝑅, 𝐿))
242239, 241oveq12d 7432 . . . . . . . . . . 11 (𝑔 = 𝑠 → ((𝐹‘(𝑋 + 𝑔)) − if(0 < 𝑔, 𝑅, 𝐿)) = ((𝐹‘(𝑋 + 𝑠)) − if(0 < 𝑠, 𝑅, 𝐿)))
243 id 22 . . . . . . . . . . 11 (𝑔 = 𝑠𝑔 = 𝑠)
244242, 243oveq12d 7432 . . . . . . . . . 10 (𝑔 = 𝑠 → (((𝐹‘(𝑋 + 𝑔)) − if(0 < 𝑔, 𝑅, 𝐿)) / 𝑔) = (((𝐹‘(𝑋 + 𝑠)) − if(0 < 𝑠, 𝑅, 𝐿)) / 𝑠))
245237, 244ifbieq2d 4550 . . . . . . . . 9 (𝑔 = 𝑠 → if(𝑔 = 0, 0, (((𝐹‘(𝑋 + 𝑔)) − if(0 < 𝑔, 𝑅, 𝐿)) / 𝑔)) = if(𝑠 = 0, 0, (((𝐹‘(𝑋 + 𝑠)) − if(0 < 𝑠, 𝑅, 𝐿)) / 𝑠)))
246245cbvmptv 5255 . . . . . . . 8 (𝑔 ∈ (-π[,]π) ↦ if(𝑔 = 0, 0, (((𝐹‘(𝑋 + 𝑔)) − if(0 < 𝑔, 𝑅, 𝐿)) / 𝑔))) = (𝑠 ∈ (-π[,]π) ↦ if(𝑠 = 0, 0, (((𝐹‘(𝑋 + 𝑠)) − if(0 < 𝑠, 𝑅, 𝐿)) / 𝑠)))
247 eqeq1 2732 . . . . . . . . . 10 (𝑜 = 𝑠 → (𝑜 = 0 ↔ 𝑠 = 0))
248 id 22 . . . . . . . . . . 11 (𝑜 = 𝑠𝑜 = 𝑠)
249 oveq1 7421 . . . . . . . . . . . . 13 (𝑜 = 𝑠 → (𝑜 / 2) = (𝑠 / 2))
250249fveq2d 6895 . . . . . . . . . . . 12 (𝑜 = 𝑠 → (sin‘(𝑜 / 2)) = (sin‘(𝑠 / 2)))
251250oveq2d 7430 . . . . . . . . . . 11 (𝑜 = 𝑠 → (2 · (sin‘(𝑜 / 2))) = (2 · (sin‘(𝑠 / 2))))
252248, 251oveq12d 7432 . . . . . . . . . 10 (𝑜 = 𝑠 → (𝑜 / (2 · (sin‘(𝑜 / 2)))) = (𝑠 / (2 · (sin‘(𝑠 / 2)))))
253247, 252ifbieq2d 4550 . . . . . . . . 9 (𝑜 = 𝑠 → if(𝑜 = 0, 1, (𝑜 / (2 · (sin‘(𝑜 / 2))))) = if(𝑠 = 0, 1, (𝑠 / (2 · (sin‘(𝑠 / 2))))))
254253cbvmptv 5255 . . . . . . . 8 (𝑜 ∈ (-π[,]π) ↦ if(𝑜 = 0, 1, (𝑜 / (2 · (sin‘(𝑜 / 2)))))) = (𝑠 ∈ (-π[,]π) ↦ if(𝑠 = 0, 1, (𝑠 / (2 · (sin‘(𝑠 / 2))))))
255 fveq2 6891 . . . . . . . . . 10 (𝑟 = 𝑠 → ((𝑔 ∈ (-π[,]π) ↦ if(𝑔 = 0, 0, (((𝐹‘(𝑋 + 𝑔)) − if(0 < 𝑔, 𝑅, 𝐿)) / 𝑔)))‘𝑟) = ((𝑔 ∈ (-π[,]π) ↦ if(𝑔 = 0, 0, (((𝐹‘(𝑋 + 𝑔)) − if(0 < 𝑔, 𝑅, 𝐿)) / 𝑔)))‘𝑠))
256 fveq2 6891 . . . . . . . . . 10 (𝑟 = 𝑠 → ((𝑜 ∈ (-π[,]π) ↦ if(𝑜 = 0, 1, (𝑜 / (2 · (sin‘(𝑜 / 2))))))‘𝑟) = ((𝑜 ∈ (-π[,]π) ↦ if(𝑜 = 0, 1, (𝑜 / (2 · (sin‘(𝑜 / 2))))))‘𝑠))
257255, 256oveq12d 7432 . . . . . . . . 9 (𝑟 = 𝑠 → (((𝑔 ∈ (-π[,]π) ↦ if(𝑔 = 0, 0, (((𝐹‘(𝑋 + 𝑔)) − if(0 < 𝑔, 𝑅, 𝐿)) / 𝑔)))‘𝑟) · ((𝑜 ∈ (-π[,]π) ↦ if(𝑜 = 0, 1, (𝑜 / (2 · (sin‘(𝑜 / 2))))))‘𝑟)) = (((𝑔 ∈ (-π[,]π) ↦ if(𝑔 = 0, 0, (((𝐹‘(𝑋 + 𝑔)) − if(0 < 𝑔, 𝑅, 𝐿)) / 𝑔)))‘𝑠) · ((𝑜 ∈ (-π[,]π) ↦ if(𝑜 = 0, 1, (𝑜 / (2 · (sin‘(𝑜 / 2))))))‘𝑠)))
258257cbvmptv 5255 . . . . . . . 8 (𝑟 ∈ (-π[,]π) ↦ (((𝑔 ∈ (-π[,]π) ↦ if(𝑔 = 0, 0, (((𝐹‘(𝑋 + 𝑔)) − if(0 < 𝑔, 𝑅, 𝐿)) / 𝑔)))‘𝑟) · ((𝑜 ∈ (-π[,]π) ↦ if(𝑜 = 0, 1, (𝑜 / (2 · (sin‘(𝑜 / 2))))))‘𝑟))) = (𝑠 ∈ (-π[,]π) ↦ (((𝑔 ∈ (-π[,]π) ↦ if(𝑔 = 0, 0, (((𝐹‘(𝑋 + 𝑔)) − if(0 < 𝑔, 𝑅, 𝐿)) / 𝑔)))‘𝑠) · ((𝑜 ∈ (-π[,]π) ↦ if(𝑜 = 0, 1, (𝑜 / (2 · (sin‘(𝑜 / 2))))))‘𝑠)))
259 oveq2 7422 . . . . . . . . . 10 (𝑑 = 𝑠 → ((𝑘 + (1 / 2)) · 𝑑) = ((𝑘 + (1 / 2)) · 𝑠))
260259fveq2d 6895 . . . . . . . . 9 (𝑑 = 𝑠 → (sin‘((𝑘 + (1 / 2)) · 𝑑)) = (sin‘((𝑘 + (1 / 2)) · 𝑠)))
261260cbvmptv 5255 . . . . . . . 8 (𝑑 ∈ (-π[,]π) ↦ (sin‘((𝑘 + (1 / 2)) · 𝑑))) = (𝑠 ∈ (-π[,]π) ↦ (sin‘((𝑘 + (1 / 2)) · 𝑠)))
262 fveq2 6891 . . . . . . . . . 10 (𝑧 = 𝑠 → ((𝑟 ∈ (-π[,]π) ↦ (((𝑔 ∈ (-π[,]π) ↦ if(𝑔 = 0, 0, (((𝐹‘(𝑋 + 𝑔)) − if(0 < 𝑔, 𝑅, 𝐿)) / 𝑔)))‘𝑟) · ((𝑜 ∈ (-π[,]π) ↦ if(𝑜 = 0, 1, (𝑜 / (2 · (sin‘(𝑜 / 2))))))‘𝑟)))‘𝑧) = ((𝑟 ∈ (-π[,]π) ↦ (((𝑔 ∈ (-π[,]π) ↦ if(𝑔 = 0, 0, (((𝐹‘(𝑋 + 𝑔)) − if(0 < 𝑔, 𝑅, 𝐿)) / 𝑔)))‘𝑟) · ((𝑜 ∈ (-π[,]π) ↦ if(𝑜 = 0, 1, (𝑜 / (2 · (sin‘(𝑜 / 2))))))‘𝑟)))‘𝑠))
263 fveq2 6891 . . . . . . . . . 10 (𝑧 = 𝑠 → ((𝑑 ∈ (-π[,]π) ↦ (sin‘((𝑘 + (1 / 2)) · 𝑑)))‘𝑧) = ((𝑑 ∈ (-π[,]π) ↦ (sin‘((𝑘 + (1 / 2)) · 𝑑)))‘𝑠))
264262, 263oveq12d 7432 . . . . . . . . 9 (𝑧 = 𝑠 → (((𝑟 ∈ (-π[,]π) ↦ (((𝑔 ∈ (-π[,]π) ↦ if(𝑔 = 0, 0, (((𝐹‘(𝑋 + 𝑔)) − if(0 < 𝑔, 𝑅, 𝐿)) / 𝑔)))‘𝑟) · ((𝑜 ∈ (-π[,]π) ↦ if(𝑜 = 0, 1, (𝑜 / (2 · (sin‘(𝑜 / 2))))))‘𝑟)))‘𝑧) · ((𝑑 ∈ (-π[,]π) ↦ (sin‘((𝑘 + (1 / 2)) · 𝑑)))‘𝑧)) = (((𝑟 ∈ (-π[,]π) ↦ (((𝑔 ∈ (-π[,]π) ↦ if(𝑔 = 0, 0, (((𝐹‘(𝑋 + 𝑔)) − if(0 < 𝑔, 𝑅, 𝐿)) / 𝑔)))‘𝑟) · ((𝑜 ∈ (-π[,]π) ↦ if(𝑜 = 0, 1, (𝑜 / (2 · (sin‘(𝑜 / 2))))))‘𝑟)))‘𝑠) · ((𝑑 ∈ (-π[,]π) ↦ (sin‘((𝑘 + (1 / 2)) · 𝑑)))‘𝑠)))
265264cbvmptv 5255 . . . . . . . 8 (𝑧 ∈ (-π[,]π) ↦ (((𝑟 ∈ (-π[,]π) ↦ (((𝑔 ∈ (-π[,]π) ↦ if(𝑔 = 0, 0, (((𝐹‘(𝑋 + 𝑔)) − if(0 < 𝑔, 𝑅, 𝐿)) / 𝑔)))‘𝑟) · ((𝑜 ∈ (-π[,]π) ↦ if(𝑜 = 0, 1, (𝑜 / (2 · (sin‘(𝑜 / 2))))))‘𝑟)))‘𝑧) · ((𝑑 ∈ (-π[,]π) ↦ (sin‘((𝑘 + (1 / 2)) · 𝑑)))‘𝑧))) = (𝑠 ∈ (-π[,]π) ↦ (((𝑟 ∈ (-π[,]π) ↦ (((𝑔 ∈ (-π[,]π) ↦ if(𝑔 = 0, 0, (((𝐹‘(𝑋 + 𝑔)) − if(0 < 𝑔, 𝑅, 𝐿)) / 𝑔)))‘𝑟) · ((𝑜 ∈ (-π[,]π) ↦ if(𝑜 = 0, 1, (𝑜 / (2 · (sin‘(𝑜 / 2))))))‘𝑟)))‘𝑠) · ((𝑑 ∈ (-π[,]π) ↦ (sin‘((𝑘 + (1 / 2)) · 𝑑)))‘𝑠)))
266 fveq2 6891 . . . . . . . . . . . . 13 (𝑚 = 𝑛 → (𝐷𝑚) = (𝐷𝑛))
267266fveq1d 6893 . . . . . . . . . . . 12 (𝑚 = 𝑛 → ((𝐷𝑚)‘𝑠) = ((𝐷𝑛)‘𝑠))
268267oveq2d 7430 . . . . . . . . . . 11 (𝑚 = 𝑛 → ((𝐹‘(𝑋 + 𝑠)) · ((𝐷𝑚)‘𝑠)) = ((𝐹‘(𝑋 + 𝑠)) · ((𝐷𝑛)‘𝑠)))
269268adantr 480 . . . . . . . . . 10 ((𝑚 = 𝑛𝑠 ∈ (-π(,)0)) → ((𝐹‘(𝑋 + 𝑠)) · ((𝐷𝑚)‘𝑠)) = ((𝐹‘(𝑋 + 𝑠)) · ((𝐷𝑛)‘𝑠)))
270269itgeq2dv 25704 . . . . . . . . 9 (𝑚 = 𝑛 → ∫(-π(,)0)((𝐹‘(𝑋 + 𝑠)) · ((𝐷𝑚)‘𝑠)) d𝑠 = ∫(-π(,)0)((𝐹‘(𝑋 + 𝑠)) · ((𝐷𝑛)‘𝑠)) d𝑠)
271270cbvmptv 5255 . . . . . . . 8 (𝑚 ∈ ℕ ↦ ∫(-π(,)0)((𝐹‘(𝑋 + 𝑠)) · ((𝐷𝑚)‘𝑠)) d𝑠) = (𝑛 ∈ ℕ ↦ ∫(-π(,)0)((𝐹‘(𝑋 + 𝑠)) · ((𝐷𝑛)‘𝑠)) d𝑠)
272 oveq1 7421 . . . . . . . . . . . . . . . . . . 19 (𝑐 = 𝑘 → (𝑐 + (1 / 2)) = (𝑘 + (1 / 2)))
273272oveq1d 7429 . . . . . . . . . . . . . . . . . 18 (𝑐 = 𝑘 → ((𝑐 + (1 / 2)) · 𝑑) = ((𝑘 + (1 / 2)) · 𝑑))
274273fveq2d 6895 . . . . . . . . . . . . . . . . 17 (𝑐 = 𝑘 → (sin‘((𝑐 + (1 / 2)) · 𝑑)) = (sin‘((𝑘 + (1 / 2)) · 𝑑)))
275274mpteq2dv 5244 . . . . . . . . . . . . . . . 16 (𝑐 = 𝑘 → (𝑑 ∈ (-π[,]π) ↦ (sin‘((𝑐 + (1 / 2)) · 𝑑))) = (𝑑 ∈ (-π[,]π) ↦ (sin‘((𝑘 + (1 / 2)) · 𝑑))))
276275fveq1d 6893 . . . . . . . . . . . . . . 15 (𝑐 = 𝑘 → ((𝑑 ∈ (-π[,]π) ↦ (sin‘((𝑐 + (1 / 2)) · 𝑑)))‘𝑧) = ((𝑑 ∈ (-π[,]π) ↦ (sin‘((𝑘 + (1 / 2)) · 𝑑)))‘𝑧))
277276oveq2d 7430 . . . . . . . . . . . . . 14 (𝑐 = 𝑘 → (((𝑟 ∈ (-π[,]π) ↦ (((𝑔 ∈ (-π[,]π) ↦ if(𝑔 = 0, 0, (((𝐹‘(𝑋 + 𝑔)) − if(0 < 𝑔, 𝑅, 𝐿)) / 𝑔)))‘𝑟) · ((𝑜 ∈ (-π[,]π) ↦ if(𝑜 = 0, 1, (𝑜 / (2 · (sin‘(𝑜 / 2))))))‘𝑟)))‘𝑧) · ((𝑑 ∈ (-π[,]π) ↦ (sin‘((𝑐 + (1 / 2)) · 𝑑)))‘𝑧)) = (((𝑟 ∈ (-π[,]π) ↦ (((𝑔 ∈ (-π[,]π) ↦ if(𝑔 = 0, 0, (((𝐹‘(𝑋 + 𝑔)) − if(0 < 𝑔, 𝑅, 𝐿)) / 𝑔)))‘𝑟) · ((𝑜 ∈ (-π[,]π) ↦ if(𝑜 = 0, 1, (𝑜 / (2 · (sin‘(𝑜 / 2))))))‘𝑟)))‘𝑧) · ((𝑑 ∈ (-π[,]π) ↦ (sin‘((𝑘 + (1 / 2)) · 𝑑)))‘𝑧)))
278277mpteq2dv 5244 . . . . . . . . . . . . 13 (𝑐 = 𝑘 → (𝑧 ∈ (-π[,]π) ↦ (((𝑟 ∈ (-π[,]π) ↦ (((𝑔 ∈ (-π[,]π) ↦ if(𝑔 = 0, 0, (((𝐹‘(𝑋 + 𝑔)) − if(0 < 𝑔, 𝑅, 𝐿)) / 𝑔)))‘𝑟) · ((𝑜 ∈ (-π[,]π) ↦ if(𝑜 = 0, 1, (𝑜 / (2 · (sin‘(𝑜 / 2))))))‘𝑟)))‘𝑧) · ((𝑑 ∈ (-π[,]π) ↦ (sin‘((𝑐 + (1 / 2)) · 𝑑)))‘𝑧))) = (𝑧 ∈ (-π[,]π) ↦ (((𝑟 ∈ (-π[,]π) ↦ (((𝑔 ∈ (-π[,]π) ↦ if(𝑔 = 0, 0, (((𝐹‘(𝑋 + 𝑔)) − if(0 < 𝑔, 𝑅, 𝐿)) / 𝑔)))‘𝑟) · ((𝑜 ∈ (-π[,]π) ↦ if(𝑜 = 0, 1, (𝑜 / (2 · (sin‘(𝑜 / 2))))))‘𝑟)))‘𝑧) · ((𝑑 ∈ (-π[,]π) ↦ (sin‘((𝑘 + (1 / 2)) · 𝑑)))‘𝑧))))
279278fveq1d 6893 . . . . . . . . . . . 12 (𝑐 = 𝑘 → ((𝑧 ∈ (-π[,]π) ↦ (((𝑟 ∈ (-π[,]π) ↦ (((𝑔 ∈ (-π[,]π) ↦ if(𝑔 = 0, 0, (((𝐹‘(𝑋 + 𝑔)) − if(0 < 𝑔, 𝑅, 𝐿)) / 𝑔)))‘𝑟) · ((𝑜 ∈ (-π[,]π) ↦ if(𝑜 = 0, 1, (𝑜 / (2 · (sin‘(𝑜 / 2))))))‘𝑟)))‘𝑧) · ((𝑑 ∈ (-π[,]π) ↦ (sin‘((𝑐 + (1 / 2)) · 𝑑)))‘𝑧)))‘𝑠) = ((𝑧 ∈ (-π[,]π) ↦ (((𝑟 ∈ (-π[,]π) ↦ (((𝑔 ∈ (-π[,]π) ↦ if(𝑔 = 0, 0, (((𝐹‘(𝑋 + 𝑔)) − if(0 < 𝑔, 𝑅, 𝐿)) / 𝑔)))‘𝑟) · ((𝑜 ∈ (-π[,]π) ↦ if(𝑜 = 0, 1, (𝑜 / (2 · (sin‘(𝑜 / 2))))))‘𝑟)))‘𝑧) · ((𝑑 ∈ (-π[,]π) ↦ (sin‘((𝑘 + (1 / 2)) · 𝑑)))‘𝑧)))‘𝑠))
280279adantr 480 . . . . . . . . . . 11 ((𝑐 = 𝑘𝑠 ∈ (-π(,)0)) → ((𝑧 ∈ (-π[,]π) ↦ (((𝑟 ∈ (-π[,]π) ↦ (((𝑔 ∈ (-π[,]π) ↦ if(𝑔 = 0, 0, (((𝐹‘(𝑋 + 𝑔)) − if(0 < 𝑔, 𝑅, 𝐿)) / 𝑔)))‘𝑟) · ((𝑜 ∈ (-π[,]π) ↦ if(𝑜 = 0, 1, (𝑜 / (2 · (sin‘(𝑜 / 2))))))‘𝑟)))‘𝑧) · ((𝑑 ∈ (-π[,]π) ↦ (sin‘((𝑐 + (1 / 2)) · 𝑑)))‘𝑧)))‘𝑠) = ((𝑧 ∈ (-π[,]π) ↦ (((𝑟 ∈ (-π[,]π) ↦ (((𝑔 ∈ (-π[,]π) ↦ if(𝑔 = 0, 0, (((𝐹‘(𝑋 + 𝑔)) − if(0 < 𝑔, 𝑅, 𝐿)) / 𝑔)))‘𝑟) · ((𝑜 ∈ (-π[,]π) ↦ if(𝑜 = 0, 1, (𝑜 / (2 · (sin‘(𝑜 / 2))))))‘𝑟)))‘𝑧) · ((𝑑 ∈ (-π[,]π) ↦ (sin‘((𝑘 + (1 / 2)) · 𝑑)))‘𝑧)))‘𝑠))
281280itgeq2dv 25704 . . . . . . . . . 10 (𝑐 = 𝑘 → ∫(-π(,)0)((𝑧 ∈ (-π[,]π) ↦ (((𝑟 ∈ (-π[,]π) ↦ (((𝑔 ∈ (-π[,]π) ↦ if(𝑔 = 0, 0, (((𝐹‘(𝑋 + 𝑔)) − if(0 < 𝑔, 𝑅, 𝐿)) / 𝑔)))‘𝑟) · ((𝑜 ∈ (-π[,]π) ↦ if(𝑜 = 0, 1, (𝑜 / (2 · (sin‘(𝑜 / 2))))))‘𝑟)))‘𝑧) · ((𝑑 ∈ (-π[,]π) ↦ (sin‘((𝑐 + (1 / 2)) · 𝑑)))‘𝑧)))‘𝑠) d𝑠 = ∫(-π(,)0)((𝑧 ∈ (-π[,]π) ↦ (((𝑟 ∈ (-π[,]π) ↦ (((𝑔 ∈ (-π[,]π) ↦ if(𝑔 = 0, 0, (((𝐹‘(𝑋 + 𝑔)) − if(0 < 𝑔, 𝑅, 𝐿)) / 𝑔)))‘𝑟) · ((𝑜 ∈ (-π[,]π) ↦ if(𝑜 = 0, 1, (𝑜 / (2 · (sin‘(𝑜 / 2))))))‘𝑟)))‘𝑧) · ((𝑑 ∈ (-π[,]π) ↦ (sin‘((𝑘 + (1 / 2)) · 𝑑)))‘𝑧)))‘𝑠) d𝑠)
282281oveq1d 7429 . . . . . . . . 9 (𝑐 = 𝑘 → (∫(-π(,)0)((𝑧 ∈ (-π[,]π) ↦ (((𝑟 ∈ (-π[,]π) ↦ (((𝑔 ∈ (-π[,]π) ↦ if(𝑔 = 0, 0, (((𝐹‘(𝑋 + 𝑔)) − if(0 < 𝑔, 𝑅, 𝐿)) / 𝑔)))‘𝑟) · ((𝑜 ∈ (-π[,]π) ↦ if(𝑜 = 0, 1, (𝑜 / (2 · (sin‘(𝑜 / 2))))))‘𝑟)))‘𝑧) · ((𝑑 ∈ (-π[,]π) ↦ (sin‘((𝑐 + (1 / 2)) · 𝑑)))‘𝑧)))‘𝑠) d𝑠 / π) = (∫(-π(,)0)((𝑧 ∈ (-π[,]π) ↦ (((𝑟 ∈ (-π[,]π) ↦ (((𝑔 ∈ (-π[,]π) ↦ if(𝑔 = 0, 0, (((𝐹‘(𝑋 + 𝑔)) − if(0 < 𝑔, 𝑅, 𝐿)) / 𝑔)))‘𝑟) · ((𝑜 ∈ (-π[,]π) ↦ if(𝑜 = 0, 1, (𝑜 / (2 · (sin‘(𝑜 / 2))))))‘𝑟)))‘𝑧) · ((𝑑 ∈ (-π[,]π) ↦ (sin‘((𝑘 + (1 / 2)) · 𝑑)))‘𝑧)))‘𝑠) d𝑠 / π))
283282cbvmptv 5255 . . . . . . . 8 (𝑐 ∈ ℕ ↦ (∫(-π(,)0)((𝑧 ∈ (-π[,]π) ↦ (((𝑟 ∈ (-π[,]π) ↦ (((𝑔 ∈ (-π[,]π) ↦ if(𝑔 = 0, 0, (((𝐹‘(𝑋 + 𝑔)) − if(0 < 𝑔, 𝑅, 𝐿)) / 𝑔)))‘𝑟) · ((𝑜 ∈ (-π[,]π) ↦ if(𝑜 = 0, 1, (𝑜 / (2 · (sin‘(𝑜 / 2))))))‘𝑟)))‘𝑧) · ((𝑑 ∈ (-π[,]π) ↦ (sin‘((𝑐 + (1 / 2)) · 𝑑)))‘𝑧)))‘𝑠) d𝑠 / π)) = (𝑘 ∈ ℕ ↦ (∫(-π(,)0)((𝑧 ∈ (-π[,]π) ↦ (((𝑟 ∈ (-π[,]π) ↦ (((𝑔 ∈ (-π[,]π) ↦ if(𝑔 = 0, 0, (((𝐹‘(𝑋 + 𝑔)) − if(0 < 𝑔, 𝑅, 𝐿)) / 𝑔)))‘𝑟) · ((𝑜 ∈ (-π[,]π) ↦ if(𝑜 = 0, 1, (𝑜 / (2 · (sin‘(𝑜 / 2))))))‘𝑟)))‘𝑧) · ((𝑑 ∈ (-π[,]π) ↦ (sin‘((𝑘 + (1 / 2)) · 𝑑)))‘𝑧)))‘𝑠) d𝑠 / π))
284 fourierdlem112.r . . . . . . . 8 (𝜑𝑅 ∈ ((𝐹 ↾ (𝑋(,)+∞)) lim 𝑋))
285 fourierdlem112.l . . . . . . . 8 (𝜑𝐿 ∈ ((𝐹 ↾ (-∞(,)𝑋)) lim 𝑋))
286 fourierdlem112.e . . . . . . . 8 (𝜑𝐸 ∈ (((ℝ D 𝐹) ↾ (-∞(,)𝑋)) lim 𝑋))
287 fourierdlem112.i . . . . . . . 8 (𝜑𝐼 ∈ (((ℝ D 𝐹) ↾ (𝑋(,)+∞)) lim 𝑋))
288 fourierdlem112.d . . . . . . . . 9 𝐷 = (𝑚 ∈ ℕ ↦ (𝑦 ∈ ℝ ↦ if((𝑦 mod (2 · π)) = 0, (((2 · 𝑚) + 1) / (2 · π)), ((sin‘((𝑚 + (1 / 2)) · 𝑦)) / ((2 · π) · (sin‘(𝑦 / 2)))))))
289 oveq1 7421 . . . . . . . . . . . . . 14 (𝑦 = 𝑠 → (𝑦 mod (2 · π)) = (𝑠 mod (2 · π)))
290289eqeq1d 2730 . . . . . . . . . . . . 13 (𝑦 = 𝑠 → ((𝑦 mod (2 · π)) = 0 ↔ (𝑠 mod (2 · π)) = 0))
291 oveq2 7422 . . . . . . . . . . . . . . 15 (𝑦 = 𝑠 → ((𝑚 + (1 / 2)) · 𝑦) = ((𝑚 + (1 / 2)) · 𝑠))
292291fveq2d 6895 . . . . . . . . . . . . . 14 (𝑦 = 𝑠 → (sin‘((𝑚 + (1 / 2)) · 𝑦)) = (sin‘((𝑚 + (1 / 2)) · 𝑠)))
293 oveq1 7421 . . . . . . . . . . . . . . . 16 (𝑦 = 𝑠 → (𝑦 / 2) = (𝑠 / 2))
294293fveq2d 6895 . . . . . . . . . . . . . . 15 (𝑦 = 𝑠 → (sin‘(𝑦 / 2)) = (sin‘(𝑠 / 2)))
295294oveq2d 7430 . . . . . . . . . . . . . 14 (𝑦 = 𝑠 → ((2 · π) · (sin‘(𝑦 / 2))) = ((2 · π) · (sin‘(𝑠 / 2))))
296292, 295oveq12d 7432 . . . . . . . . . . . . 13 (𝑦 = 𝑠 → ((sin‘((𝑚 + (1 / 2)) · 𝑦)) / ((2 · π) · (sin‘(𝑦 / 2)))) = ((sin‘((𝑚 + (1 / 2)) · 𝑠)) / ((2 · π) · (sin‘(𝑠 / 2)))))
297290, 296ifbieq2d 4550 . . . . . . . . . . . 12 (𝑦 = 𝑠 → if((𝑦 mod (2 · π)) = 0, (((2 · 𝑚) + 1) / (2 · π)), ((sin‘((𝑚 + (1 / 2)) · 𝑦)) / ((2 · π) · (sin‘(𝑦 / 2))))) = if((𝑠 mod (2 · π)) = 0, (((2 · 𝑚) + 1) / (2 · π)), ((sin‘((𝑚 + (1 / 2)) · 𝑠)) / ((2 · π) · (sin‘(𝑠 / 2))))))
298297cbvmptv 5255 . . . . . . . . . . 11 (𝑦 ∈ ℝ ↦ if((𝑦 mod (2 · π)) = 0, (((2 · 𝑚) + 1) / (2 · π)), ((sin‘((𝑚 + (1 / 2)) · 𝑦)) / ((2 · π) · (sin‘(𝑦 / 2)))))) = (𝑠 ∈ ℝ ↦ if((𝑠 mod (2 · π)) = 0, (((2 · 𝑚) + 1) / (2 · π)), ((sin‘((𝑚 + (1 / 2)) · 𝑠)) / ((2 · π) · (sin‘(𝑠 / 2))))))
299 simpl 482 . . . . . . . . . . . . . . . 16 ((𝑚 = 𝑘𝑠 ∈ ℝ) → 𝑚 = 𝑘)
300299oveq2d 7430 . . . . . . . . . . . . . . 15 ((𝑚 = 𝑘𝑠 ∈ ℝ) → (2 · 𝑚) = (2 · 𝑘))
301300oveq1d 7429 . . . . . . . . . . . . . 14 ((𝑚 = 𝑘𝑠 ∈ ℝ) → ((2 · 𝑚) + 1) = ((2 · 𝑘) + 1))
302301oveq1d 7429 . . . . . . . . . . . . 13 ((𝑚 = 𝑘𝑠 ∈ ℝ) → (((2 · 𝑚) + 1) / (2 · π)) = (((2 · 𝑘) + 1) / (2 · π)))
303299oveq1d 7429 . . . . . . . . . . . . . . . 16 ((𝑚 = 𝑘𝑠 ∈ ℝ) → (𝑚 + (1 / 2)) = (𝑘 + (1 / 2)))
304303oveq1d 7429 . . . . . . . . . . . . . . 15 ((𝑚 = 𝑘𝑠 ∈ ℝ) → ((𝑚 + (1 / 2)) · 𝑠) = ((𝑘 + (1 / 2)) · 𝑠))
305304fveq2d 6895 . . . . . . . . . . . . . 14 ((𝑚 = 𝑘𝑠 ∈ ℝ) → (sin‘((𝑚 + (1 / 2)) · 𝑠)) = (sin‘((𝑘 + (1 / 2)) · 𝑠)))
306305oveq1d 7429 . . . . . . . . . . . . 13 ((𝑚 = 𝑘𝑠 ∈ ℝ) → ((sin‘((𝑚 + (1 / 2)) · 𝑠)) / ((2 · π) · (sin‘(𝑠 / 2)))) = ((sin‘((𝑘 + (1 / 2)) · 𝑠)) / ((2 · π) · (sin‘(𝑠 / 2)))))
307302, 306ifeq12d 4545 . . . . . . . . . . . 12 ((𝑚 = 𝑘𝑠 ∈ ℝ) → if((𝑠 mod (2 · π)) = 0, (((2 · 𝑚) + 1) / (2 · π)), ((sin‘((𝑚 + (1 / 2)) · 𝑠)) / ((2 · π) · (sin‘(𝑠 / 2))))) = if((𝑠 mod (2 · π)) = 0, (((2 · 𝑘) + 1) / (2 · π)), ((sin‘((𝑘 + (1 / 2)) · 𝑠)) / ((2 · π) · (sin‘(𝑠 / 2))))))
308307mpteq2dva 5242 . . . . . . . . . . 11 (𝑚 = 𝑘 → (𝑠 ∈ ℝ ↦ if((𝑠 mod (2 · π)) = 0, (((2 · 𝑚) + 1) / (2 · π)), ((sin‘((𝑚 + (1 / 2)) · 𝑠)) / ((2 · π) · (sin‘(𝑠 / 2)))))) = (𝑠 ∈ ℝ ↦ if((𝑠 mod (2 · π)) = 0, (((2 · 𝑘) + 1) / (2 · π)), ((sin‘((𝑘 + (1 / 2)) · 𝑠)) / ((2 · π) · (sin‘(𝑠 / 2)))))))
309298, 308eqtrid 2780 . . . . . . . . . 10 (𝑚 = 𝑘 → (𝑦 ∈ ℝ ↦ if((𝑦 mod (2 · π)) = 0, (((2 · 𝑚) + 1) / (2 · π)), ((sin‘((𝑚 + (1 / 2)) · 𝑦)) / ((2 · π) · (sin‘(𝑦 / 2)))))) = (𝑠 ∈ ℝ ↦ if((𝑠 mod (2 · π)) = 0, (((2 · 𝑘) + 1) / (2 · π)), ((sin‘((𝑘 + (1 / 2)) · 𝑠)) / ((2 · π) · (sin‘(𝑠 / 2)))))))
310309cbvmptv 5255 . . . . . . . . 9 (𝑚 ∈ ℕ ↦ (𝑦 ∈ ℝ ↦ if((𝑦 mod (2 · π)) = 0, (((2 · 𝑚) + 1) / (2 · π)), ((sin‘((𝑚 + (1 / 2)) · 𝑦)) / ((2 · π) · (sin‘(𝑦 / 2))))))) = (𝑘 ∈ ℕ ↦ (𝑠 ∈ ℝ ↦ if((𝑠 mod (2 · π)) = 0, (((2 · 𝑘) + 1) / (2 · π)), ((sin‘((𝑘 + (1 / 2)) · 𝑠)) / ((2 · π) · (sin‘(𝑠 / 2)))))))
311288, 310eqtri 2756 . . . . . . . 8 𝐷 = (𝑘 ∈ ℕ ↦ (𝑠 ∈ ℝ ↦ if((𝑠 mod (2 · π)) = 0, (((2 · 𝑘) + 1) / (2 · π)), ((sin‘((𝑘 + (1 / 2)) · 𝑠)) / ((2 · π) · (sin‘(𝑠 / 2)))))))
312 eqid 2728 . . . . . . . 8 ((𝑟 ∈ (-π[,]π) ↦ (((𝑔 ∈ (-π[,]π) ↦ if(𝑔 = 0, 0, (((𝐹‘(𝑋 + 𝑔)) − if(0 < 𝑔, 𝑅, 𝐿)) / 𝑔)))‘𝑟) · ((𝑜 ∈ (-π[,]π) ↦ if(𝑜 = 0, 1, (𝑜 / (2 · (sin‘(𝑜 / 2))))))‘𝑟))) ↾ (-π[,]𝑙)) = ((𝑟 ∈ (-π[,]π) ↦ (((𝑔 ∈ (-π[,]π) ↦ if(𝑔 = 0, 0, (((𝐹‘(𝑋 + 𝑔)) − if(0 < 𝑔, 𝑅, 𝐿)) / 𝑔)))‘𝑟) · ((𝑜 ∈ (-π[,]π) ↦ if(𝑜 = 0, 1, (𝑜 / (2 · (sin‘(𝑜 / 2))))))‘𝑟))) ↾ (-π[,]𝑙))
313 eqid 2728 . . . . . . . 8 ({-π, 𝑙} ∪ (ran (𝑗 ∈ (0...𝑁) ↦ ((𝑉𝑗) − 𝑋)) ∩ (-π(,)𝑙))) = ({-π, 𝑙} ∪ (ran (𝑗 ∈ (0...𝑁) ↦ ((𝑉𝑗) − 𝑋)) ∩ (-π(,)𝑙)))
314 eqid 2728 . . . . . . . 8 ((♯‘({-π, 𝑙} ∪ (ran (𝑗 ∈ (0...𝑁) ↦ ((𝑉𝑗) − 𝑋)) ∩ (-π(,)𝑙)))) − 1) = ((♯‘({-π, 𝑙} ∪ (ran (𝑗 ∈ (0...𝑁) ↦ ((𝑉𝑗) − 𝑋)) ∩ (-π(,)𝑙)))) − 1)
315 isoeq1 7319 . . . . . . . . 9 (𝑢 = 𝑤 → (𝑢 Isom < , < ((0...((♯‘({-π, 𝑙} ∪ (ran (𝑗 ∈ (0...𝑁) ↦ ((𝑉𝑗) − 𝑋)) ∩ (-π(,)𝑙)))) − 1)), ({-π, 𝑙} ∪ (ran (𝑗 ∈ (0...𝑁) ↦ ((𝑉𝑗) − 𝑋)) ∩ (-π(,)𝑙)))) ↔ 𝑤 Isom < , < ((0...((♯‘({-π, 𝑙} ∪ (ran (𝑗 ∈ (0...𝑁) ↦ ((𝑉𝑗) − 𝑋)) ∩ (-π(,)𝑙)))) − 1)), ({-π, 𝑙} ∪ (ran (𝑗 ∈ (0...𝑁) ↦ ((𝑉𝑗) − 𝑋)) ∩ (-π(,)𝑙))))))
316315cbviotavw 6502 . . . . . . . 8 (℩𝑢𝑢 Isom < , < ((0...((♯‘({-π, 𝑙} ∪ (ran (𝑗 ∈ (0...𝑁) ↦ ((𝑉𝑗) − 𝑋)) ∩ (-π(,)𝑙)))) − 1)), ({-π, 𝑙} ∪ (ran (𝑗 ∈ (0...𝑁) ↦ ((𝑉𝑗) − 𝑋)) ∩ (-π(,)𝑙))))) = (℩𝑤𝑤 Isom < , < ((0...((♯‘({-π, 𝑙} ∪ (ran (𝑗 ∈ (0...𝑁) ↦ ((𝑉𝑗) − 𝑋)) ∩ (-π(,)𝑙)))) − 1)), ({-π, 𝑙} ∪ (ran (𝑗 ∈ (0...𝑁) ↦ ((𝑉𝑗) − 𝑋)) ∩ (-π(,)𝑙)))))
317 fveq2 6891 . . . . . . . . . 10 (𝑗 = 𝑖 → (𝑉𝑗) = (𝑉𝑖))
318317oveq1d 7429 . . . . . . . . 9 (𝑗 = 𝑖 → ((𝑉𝑗) − 𝑋) = ((𝑉𝑖) − 𝑋))
319318cbvmptv 5255 . . . . . . . 8 (𝑗 ∈ (0...𝑁) ↦ ((𝑉𝑗) − 𝑋)) = (𝑖 ∈ (0...𝑁) ↦ ((𝑉𝑖) − 𝑋))
320 eqid 2728 . . . . . . . 8 (𝑚 ∈ (0..^𝑁)(((℩𝑢𝑢 Isom < , < ((0...((♯‘({-π, 𝑙} ∪ (ran (𝑗 ∈ (0...𝑁) ↦ ((𝑉𝑗) − 𝑋)) ∩ (-π(,)𝑙)))) − 1)), ({-π, 𝑙} ∪ (ran (𝑗 ∈ (0...𝑁) ↦ ((𝑉𝑗) − 𝑋)) ∩ (-π(,)𝑙)))))‘𝑏)(,)((℩𝑢𝑢 Isom < , < ((0...((♯‘({-π, 𝑙} ∪ (ran (𝑗 ∈ (0...𝑁) ↦ ((𝑉𝑗) − 𝑋)) ∩ (-π(,)𝑙)))) − 1)), ({-π, 𝑙} ∪ (ran (𝑗 ∈ (0...𝑁) ↦ ((𝑉𝑗) − 𝑋)) ∩ (-π(,)𝑙)))))‘(𝑏 + 1))) ⊆ (((𝑗 ∈ (0...𝑁) ↦ ((𝑉𝑗) − 𝑋))‘𝑚)(,)((𝑗 ∈ (0...𝑁) ↦ ((𝑉𝑗) − 𝑋))‘(𝑚 + 1)))) = (𝑚 ∈ (0..^𝑁)(((℩𝑢𝑢 Isom < , < ((0...((♯‘({-π, 𝑙} ∪ (ran (𝑗 ∈ (0...𝑁) ↦ ((𝑉𝑗) − 𝑋)) ∩ (-π(,)𝑙)))) − 1)), ({-π, 𝑙} ∪ (ran (𝑗 ∈ (0...𝑁) ↦ ((𝑉𝑗) − 𝑋)) ∩ (-π(,)𝑙)))))‘𝑏)(,)((℩𝑢𝑢 Isom < , < ((0...((♯‘({-π, 𝑙} ∪ (ran (𝑗 ∈ (0...𝑁) ↦ ((𝑉𝑗) − 𝑋)) ∩ (-π(,)𝑙)))) − 1)), ({-π, 𝑙} ∪ (ran (𝑗 ∈ (0...𝑁) ↦ ((𝑉𝑗) − 𝑋)) ∩ (-π(,)𝑙)))))‘(𝑏 + 1))) ⊆ (((𝑗 ∈ (0...𝑁) ↦ ((𝑉𝑗) − 𝑋))‘𝑚)(,)((𝑗 ∈ (0...𝑁) ↦ ((𝑉𝑗) − 𝑋))‘(𝑚 + 1))))
321 fveq2 6891 . . . . . . . . . . . . . 14 (𝑎 = 𝑠 → ((𝑟 ∈ (-π[,]π) ↦ (((𝑔 ∈ (-π[,]π) ↦ if(𝑔 = 0, 0, (((𝐹‘(𝑋 + 𝑔)) − if(0 < 𝑔, 𝑅, 𝐿)) / 𝑔)))‘𝑟) · ((𝑜 ∈ (-π[,]π) ↦ if(𝑜 = 0, 1, (𝑜 / (2 · (sin‘(𝑜 / 2))))))‘𝑟)))‘𝑎) = ((𝑟 ∈ (-π[,]π) ↦ (((𝑔 ∈ (-π[,]π) ↦ if(𝑔 = 0, 0, (((𝐹‘(𝑋 + 𝑔)) − if(0 < 𝑔, 𝑅, 𝐿)) / 𝑔)))‘𝑟) · ((𝑜 ∈ (-π[,]π) ↦ if(𝑜 = 0, 1, (𝑜 / (2 · (sin‘(𝑜 / 2))))))‘𝑟)))‘𝑠))
322 oveq2 7422 . . . . . . . . . . . . . . 15 (𝑎 = 𝑠 → ((𝑏 + (1 / 2)) · 𝑎) = ((𝑏 + (1 / 2)) · 𝑠))
323322fveq2d 6895 . . . . . . . . . . . . . 14 (𝑎 = 𝑠 → (sin‘((𝑏 + (1 / 2)) · 𝑎)) = (sin‘((𝑏 + (1 / 2)) · 𝑠)))
324321, 323oveq12d 7432 . . . . . . . . . . . . 13 (𝑎 = 𝑠 → (((𝑟 ∈ (-π[,]π) ↦ (((𝑔 ∈ (-π[,]π) ↦ if(𝑔 = 0, 0, (((𝐹‘(𝑋 + 𝑔)) − if(0 < 𝑔, 𝑅, 𝐿)) / 𝑔)))‘𝑟) · ((𝑜 ∈ (-π[,]π) ↦ if(𝑜 = 0, 1, (𝑜 / (2 · (sin‘(𝑜 / 2))))))‘𝑟)))‘𝑎) · (sin‘((𝑏 + (1 / 2)) · 𝑎))) = (((𝑟 ∈ (-π[,]π) ↦ (((𝑔 ∈ (-π[,]π) ↦ if(𝑔 = 0, 0, (((𝐹‘(𝑋 + 𝑔)) − if(0 < 𝑔, 𝑅, 𝐿)) / 𝑔)))‘𝑟) · ((𝑜 ∈ (-π[,]π) ↦ if(𝑜 = 0, 1, (𝑜 / (2 · (sin‘(𝑜 / 2))))))‘𝑟)))‘𝑠) · (sin‘((𝑏 + (1 / 2)) · 𝑠))))
325324cbvitgv 25699 . . . . . . . . . . . 12 ∫(𝑙(,)0)(((𝑟 ∈ (-π[,]π) ↦ (((𝑔 ∈ (-π[,]π) ↦ if(𝑔 = 0, 0, (((𝐹‘(𝑋 + 𝑔)) − if(0 < 𝑔, 𝑅, 𝐿)) / 𝑔)))‘𝑟) · ((𝑜 ∈ (-π[,]π) ↦ if(𝑜 = 0, 1, (𝑜 / (2 · (sin‘(𝑜 / 2))))))‘𝑟)))‘𝑎) · (sin‘((𝑏 + (1 / 2)) · 𝑎))) d𝑎 = ∫(𝑙(,)0)(((𝑟 ∈ (-π[,]π) ↦ (((𝑔 ∈ (-π[,]π) ↦ if(𝑔 = 0, 0, (((𝐹‘(𝑋 + 𝑔)) − if(0 < 𝑔, 𝑅, 𝐿)) / 𝑔)))‘𝑟) · ((𝑜 ∈ (-π[,]π) ↦ if(𝑜 = 0, 1, (𝑜 / (2 · (sin‘(𝑜 / 2))))))‘𝑟)))‘𝑠) · (sin‘((𝑏 + (1 / 2)) · 𝑠))) d𝑠
326325fveq2i 6894 . . . . . . . . . . 11 (abs‘∫(𝑙(,)0)(((𝑟 ∈ (-π[,]π) ↦ (((𝑔 ∈ (-π[,]π) ↦ if(𝑔 = 0, 0, (((𝐹‘(𝑋 + 𝑔)) − if(0 < 𝑔, 𝑅, 𝐿)) / 𝑔)))‘𝑟) · ((𝑜 ∈ (-π[,]π) ↦ if(𝑜 = 0, 1, (𝑜 / (2 · (sin‘(𝑜 / 2))))))‘𝑟)))‘𝑎) · (sin‘((𝑏 + (1 / 2)) · 𝑎))) d𝑎) = (abs‘∫(𝑙(,)0)(((𝑟 ∈ (-π[,]π) ↦ (((𝑔 ∈ (-π[,]π) ↦ if(𝑔 = 0, 0, (((𝐹‘(𝑋 + 𝑔)) − if(0 < 𝑔, 𝑅, 𝐿)) / 𝑔)))‘𝑟) · ((𝑜 ∈ (-π[,]π) ↦ if(𝑜 = 0, 1, (𝑜 / (2 · (sin‘(𝑜 / 2))))))‘𝑟)))‘𝑠) · (sin‘((𝑏 + (1 / 2)) · 𝑠))) d𝑠)
327326breq1i 5149 . . . . . . . . . 10 ((abs‘∫(𝑙(,)0)(((𝑟 ∈ (-π[,]π) ↦ (((𝑔 ∈ (-π[,]π) ↦ if(𝑔 = 0, 0, (((𝐹‘(𝑋 + 𝑔)) − if(0 < 𝑔, 𝑅, 𝐿)) / 𝑔)))‘𝑟) · ((𝑜 ∈ (-π[,]π) ↦ if(𝑜 = 0, 1, (𝑜 / (2 · (sin‘(𝑜 / 2))))))‘𝑟)))‘𝑎) · (sin‘((𝑏 + (1 / 2)) · 𝑎))) d𝑎) < (𝑖 / 2) ↔ (abs‘∫(𝑙(,)0)(((𝑟 ∈ (-π[,]π) ↦ (((𝑔 ∈ (-π[,]π) ↦ if(𝑔 = 0, 0, (((𝐹‘(𝑋 + 𝑔)) − if(0 < 𝑔, 𝑅, 𝐿)) / 𝑔)))‘𝑟) · ((𝑜 ∈ (-π[,]π) ↦ if(𝑜 = 0, 1, (𝑜 / (2 · (sin‘(𝑜 / 2))))))‘𝑟)))‘𝑠) · (sin‘((𝑏 + (1 / 2)) · 𝑠))) d𝑠) < (𝑖 / 2))
328327anbi2i 622 . . . . . . . . 9 (((((𝜑𝑖 ∈ ℝ+) ∧ 𝑙 ∈ (-π(,)0)) ∧ 𝑏 ∈ ℕ) ∧ (abs‘∫(𝑙(,)0)(((𝑟 ∈ (-π[,]π) ↦ (((𝑔 ∈ (-π[,]π) ↦ if(𝑔 = 0, 0, (((𝐹‘(𝑋 + 𝑔)) − if(0 < 𝑔, 𝑅, 𝐿)) / 𝑔)))‘𝑟) · ((𝑜 ∈ (-π[,]π) ↦ if(𝑜 = 0, 1, (𝑜 / (2 · (sin‘(𝑜 / 2))))))‘𝑟)))‘𝑎) · (sin‘((𝑏 + (1 / 2)) · 𝑎))) d𝑎) < (𝑖 / 2)) ↔ ((((𝜑𝑖 ∈ ℝ+) ∧ 𝑙 ∈ (-π(,)0)) ∧ 𝑏 ∈ ℕ) ∧ (abs‘∫(𝑙(,)0)(((𝑟 ∈ (-π[,]π) ↦ (((𝑔 ∈ (-π[,]π) ↦ if(𝑔 = 0, 0, (((𝐹‘(𝑋 + 𝑔)) − if(0 < 𝑔, 𝑅, 𝐿)) / 𝑔)))‘𝑟) · ((𝑜 ∈ (-π[,]π) ↦ if(𝑜 = 0, 1, (𝑜 / (2 · (sin‘(𝑜 / 2))))))‘𝑟)))‘𝑠) · (sin‘((𝑏 + (1 / 2)) · 𝑠))) d𝑠) < (𝑖 / 2)))
329324cbvitgv 25699 . . . . . . . . . . 11 ∫(-π(,)𝑙)(((𝑟 ∈ (-π[,]π) ↦ (((𝑔 ∈ (-π[,]π) ↦ if(𝑔 = 0, 0, (((𝐹‘(𝑋 + 𝑔)) − if(0 < 𝑔, 𝑅, 𝐿)) / 𝑔)))‘𝑟) · ((𝑜 ∈ (-π[,]π) ↦ if(𝑜 = 0, 1, (𝑜 / (2 · (sin‘(𝑜 / 2))))))‘𝑟)))‘𝑎) · (sin‘((𝑏 + (1 / 2)) · 𝑎))) d𝑎 = ∫(-π(,)𝑙)(((𝑟 ∈ (-π[,]π) ↦ (((𝑔 ∈ (-π[,]π) ↦ if(𝑔 = 0, 0, (((𝐹‘(𝑋 + 𝑔)) − if(0 < 𝑔, 𝑅, 𝐿)) / 𝑔)))‘𝑟) · ((𝑜 ∈ (-π[,]π) ↦ if(𝑜 = 0, 1, (𝑜 / (2 · (sin‘(𝑜 / 2))))))‘𝑟)))‘𝑠) · (sin‘((𝑏 + (1 / 2)) · 𝑠))) d𝑠
330329fveq2i 6894 . . . . . . . . . 10 (abs‘∫(-π(,)𝑙)(((𝑟 ∈ (-π[,]π) ↦ (((𝑔 ∈ (-π[,]π) ↦ if(𝑔 = 0, 0, (((𝐹‘(𝑋 + 𝑔)) − if(0 < 𝑔, 𝑅, 𝐿)) / 𝑔)))‘𝑟) · ((𝑜 ∈ (-π[,]π) ↦ if(𝑜 = 0, 1, (𝑜 / (2 · (sin‘(𝑜 / 2))))))‘𝑟)))‘𝑎) · (sin‘((𝑏 + (1 / 2)) · 𝑎))) d𝑎) = (abs‘∫(-π(,)𝑙)(((𝑟 ∈ (-π[,]π) ↦ (((𝑔 ∈ (-π[,]π) ↦ if(𝑔 = 0, 0, (((𝐹‘(𝑋 + 𝑔)) − if(0 < 𝑔, 𝑅, 𝐿)) / 𝑔)))‘𝑟) · ((𝑜 ∈ (-π[,]π) ↦ if(𝑜 = 0, 1, (𝑜 / (2 · (sin‘(𝑜 / 2))))))‘𝑟)))‘𝑠) · (sin‘((𝑏 + (1 / 2)) · 𝑠))) d𝑠)
331330breq1i 5149 . . . . . . . . 9 ((abs‘∫(-π(,)𝑙)(((𝑟 ∈ (-π[,]π) ↦ (((𝑔 ∈ (-π[,]π) ↦ if(𝑔 = 0, 0, (((𝐹‘(𝑋 + 𝑔)) − if(0 < 𝑔, 𝑅, 𝐿)) / 𝑔)))‘𝑟) · ((𝑜 ∈ (-π[,]π) ↦ if(𝑜 = 0, 1, (𝑜 / (2 · (sin‘(𝑜 / 2))))))‘𝑟)))‘𝑎) · (sin‘((𝑏 + (1 / 2)) · 𝑎))) d𝑎) < (𝑖 / 2) ↔ (abs‘∫(-π(,)𝑙)(((𝑟 ∈ (-π[,]π) ↦ (((𝑔 ∈ (-π[,]π) ↦ if(𝑔 = 0, 0, (((𝐹‘(𝑋 + 𝑔)) − if(0 < 𝑔, 𝑅, 𝐿)) / 𝑔)))‘𝑟) · ((𝑜 ∈ (-π[,]π) ↦ if(𝑜 = 0, 1, (𝑜 / (2 · (sin‘(𝑜 / 2))))))‘𝑟)))‘𝑠) · (sin‘((𝑏 + (1 / 2)) · 𝑠))) d𝑠) < (𝑖 / 2))
332328, 331anbi12i 627 . . . . . . . 8 ((((((𝜑𝑖 ∈ ℝ+) ∧ 𝑙 ∈ (-π(,)0)) ∧ 𝑏 ∈ ℕ) ∧ (abs‘∫(𝑙(,)0)(((𝑟 ∈ (-π[,]π) ↦ (((𝑔 ∈ (-π[,]π) ↦ if(𝑔 = 0, 0, (((𝐹‘(𝑋 + 𝑔)) − if(0 < 𝑔, 𝑅, 𝐿)) / 𝑔)))‘𝑟) · ((𝑜 ∈ (-π[,]π) ↦ if(𝑜 = 0, 1, (𝑜 / (2 · (sin‘(𝑜 / 2))))))‘𝑟)))‘𝑎) · (sin‘((𝑏 + (1 / 2)) · 𝑎))) d𝑎) < (𝑖 / 2)) ∧ (abs‘∫(-π(,)𝑙)(((𝑟 ∈ (-π[,]π) ↦ (((𝑔 ∈ (-π[,]π) ↦ if(𝑔 = 0, 0, (((𝐹‘(𝑋 + 𝑔)) − if(0 < 𝑔, 𝑅, 𝐿)) / 𝑔)))‘𝑟) · ((𝑜 ∈ (-π[,]π) ↦ if(𝑜 = 0, 1, (𝑜 / (2 · (sin‘(𝑜 / 2))))))‘𝑟)))‘𝑎) · (sin‘((𝑏 + (1 / 2)) · 𝑎))) d𝑎) < (𝑖 / 2)) ↔ (((((𝜑𝑖 ∈ ℝ+) ∧ 𝑙 ∈ (-π(,)0)) ∧ 𝑏 ∈ ℕ) ∧ (abs‘∫(𝑙(,)0)(((𝑟 ∈ (-π[,]π) ↦ (((𝑔 ∈ (-π[,]π) ↦ if(𝑔 = 0, 0, (((𝐹‘(𝑋 + 𝑔)) − if(0 < 𝑔, 𝑅, 𝐿)) / 𝑔)))‘𝑟) · ((𝑜 ∈ (-π[,]π) ↦ if(𝑜 = 0, 1, (𝑜 / (2 · (sin‘(𝑜 / 2))))))‘𝑟)))‘𝑠) · (sin‘((𝑏 + (1 / 2)) · 𝑠))) d𝑠) < (𝑖 / 2)) ∧ (abs‘∫(-π(,)𝑙)(((𝑟 ∈ (-π[,]π) ↦ (((𝑔 ∈ (-π[,]π) ↦ if(𝑔 = 0, 0, (((𝐹‘(𝑋 + 𝑔)) − if(0 < 𝑔, 𝑅, 𝐿)) / 𝑔)))‘𝑟) · ((𝑜 ∈ (-π[,]π) ↦ if(𝑜 = 0, 1, (𝑜 / (2 · (sin‘(𝑜 / 2))))))‘𝑟)))‘𝑠) · (sin‘((𝑏 + (1 / 2)) · 𝑠))) d𝑠) < (𝑖 / 2)))
33343, 44, 45, 76, 77, 78, 122, 132, 182, 213, 225, 236, 246, 254, 258, 261, 265, 271, 283, 284, 285, 286, 287, 311, 312, 313, 314, 316, 319, 320, 332fourierdlem103 45591 . . . . . . 7 (𝜑 → (𝑚 ∈ ℕ ↦ ∫(-π(,)0)((𝐹‘(𝑋 + 𝑠)) · ((𝐷𝑚)‘𝑠)) d𝑠) ⇝ (𝐿 / 2))
334 nnex 12242 . . . . . . . . . 10 ℕ ∈ V
335334mptex 7229 . . . . . . . . 9 (𝑚 ∈ ℕ ↦ (((𝐴‘0) / 2) + Σ𝑛 ∈ (1...𝑚)(((𝐴𝑛) · (cos‘(𝑛 · 𝑋))) + ((𝐵𝑛) · (sin‘(𝑛 · 𝑋)))))) ∈ V
33628, 335eqeltri 2825 . . . . . . . 8 𝑍 ∈ V
337336a1i 11 . . . . . . 7 (𝜑𝑍 ∈ V)
338268adantr 480 . . . . . . . . . 10 ((𝑚 = 𝑛𝑠 ∈ (0(,)π)) → ((𝐹‘(𝑋 + 𝑠)) · ((𝐷𝑚)‘𝑠)) = ((𝐹‘(𝑋 + 𝑠)) · ((𝐷𝑛)‘𝑠)))
339338itgeq2dv 25704 . . . . . . . . 9 (𝑚 = 𝑛 → ∫(0(,)π)((𝐹‘(𝑋 + 𝑠)) · ((𝐷𝑚)‘𝑠)) d𝑠 = ∫(0(,)π)((𝐹‘(𝑋 + 𝑠)) · ((𝐷𝑛)‘𝑠)) d𝑠)
340339cbvmptv 5255 . . . . . . . 8 (𝑚 ∈ ℕ ↦ ∫(0(,)π)((𝐹‘(𝑋 + 𝑠)) · ((𝐷𝑚)‘𝑠)) d𝑠) = (𝑛 ∈ ℕ ↦ ∫(0(,)π)((𝐹‘(𝑋 + 𝑠)) · ((𝐷𝑛)‘𝑠)) d𝑠)
341279adantr 480 . . . . . . . . . . 11 ((𝑐 = 𝑘𝑠 ∈ (0(,)π)) → ((𝑧 ∈ (-π[,]π) ↦ (((𝑟 ∈ (-π[,]π) ↦ (((𝑔 ∈ (-π[,]π) ↦ if(𝑔 = 0, 0, (((𝐹‘(𝑋 + 𝑔)) − if(0 < 𝑔, 𝑅, 𝐿)) / 𝑔)))‘𝑟) · ((𝑜 ∈ (-π[,]π) ↦ if(𝑜 = 0, 1, (𝑜 / (2 · (sin‘(𝑜 / 2))))))‘𝑟)))‘𝑧) · ((𝑑 ∈ (-π[,]π) ↦ (sin‘((𝑐 + (1 / 2)) · 𝑑)))‘𝑧)))‘𝑠) = ((𝑧 ∈ (-π[,]π) ↦ (((𝑟 ∈ (-π[,]π) ↦ (((𝑔 ∈ (-π[,]π) ↦ if(𝑔 = 0, 0, (((𝐹‘(𝑋 + 𝑔)) − if(0 < 𝑔, 𝑅, 𝐿)) / 𝑔)))‘𝑟) · ((𝑜 ∈ (-π[,]π) ↦ if(𝑜 = 0, 1, (𝑜 / (2 · (sin‘(𝑜 / 2))))))‘𝑟)))‘𝑧) · ((𝑑 ∈ (-π[,]π) ↦ (sin‘((𝑘 + (1 / 2)) · 𝑑)))‘𝑧)))‘𝑠))
342341itgeq2dv 25704 . . . . . . . . . 10 (𝑐 = 𝑘 → ∫(0(,)π)((𝑧 ∈ (-π[,]π) ↦ (((𝑟 ∈ (-π[,]π) ↦ (((𝑔 ∈ (-π[,]π) ↦ if(𝑔 = 0, 0, (((𝐹‘(𝑋 + 𝑔)) − if(0 < 𝑔, 𝑅, 𝐿)) / 𝑔)))‘𝑟) · ((𝑜 ∈ (-π[,]π) ↦ if(𝑜 = 0, 1, (𝑜 / (2 · (sin‘(𝑜 / 2))))))‘𝑟)))‘𝑧) · ((𝑑 ∈ (-π[,]π) ↦ (sin‘((𝑐 + (1 / 2)) · 𝑑)))‘𝑧)))‘𝑠) d𝑠 = ∫(0(,)π)((𝑧 ∈ (-π[,]π) ↦ (((𝑟 ∈ (-π[,]π) ↦ (((𝑔 ∈ (-π[,]π) ↦ if(𝑔 = 0, 0, (((𝐹‘(𝑋 + 𝑔)) − if(0 < 𝑔, 𝑅, 𝐿)) / 𝑔)))‘𝑟) · ((𝑜 ∈ (-π[,]π) ↦ if(𝑜 = 0, 1, (𝑜 / (2 · (sin‘(𝑜 / 2))))))‘𝑟)))‘𝑧) · ((𝑑 ∈ (-π[,]π) ↦ (sin‘((𝑘 + (1 / 2)) · 𝑑)))‘𝑧)))‘𝑠) d𝑠)
343342oveq1d 7429 . . . . . . . . 9 (𝑐 = 𝑘 → (∫(0(,)π)((𝑧 ∈ (-π[,]π) ↦ (((𝑟 ∈ (-π[,]π) ↦ (((𝑔 ∈ (-π[,]π) ↦ if(𝑔 = 0, 0, (((𝐹‘(𝑋 + 𝑔)) − if(0 < 𝑔, 𝑅, 𝐿)) / 𝑔)))‘𝑟) · ((𝑜 ∈ (-π[,]π) ↦ if(𝑜 = 0, 1, (𝑜 / (2 · (sin‘(𝑜 / 2))))))‘𝑟)))‘𝑧) · ((𝑑 ∈ (-π[,]π) ↦ (sin‘((𝑐 + (1 / 2)) · 𝑑)))‘𝑧)))‘𝑠) d𝑠 / π) = (∫(0(,)π)((𝑧 ∈ (-π[,]π) ↦ (((𝑟 ∈ (-π[,]π) ↦ (((𝑔 ∈ (-π[,]π) ↦ if(𝑔 = 0, 0, (((𝐹‘(𝑋 + 𝑔)) − if(0 < 𝑔, 𝑅, 𝐿)) / 𝑔)))‘𝑟) · ((𝑜 ∈ (-π[,]π) ↦ if(𝑜 = 0, 1, (𝑜 / (2 · (sin‘(𝑜 / 2))))))‘𝑟)))‘𝑧) · ((𝑑 ∈ (-π[,]π) ↦ (sin‘((𝑘 + (1 / 2)) · 𝑑)))‘𝑧)))‘𝑠) d𝑠 / π))
344343cbvmptv 5255 . . . . . . . 8 (𝑐 ∈ ℕ ↦ (∫(0(,)π)((𝑧 ∈ (-π[,]π) ↦ (((𝑟 ∈ (-π[,]π) ↦ (((𝑔 ∈ (-π[,]π) ↦ if(𝑔 = 0, 0, (((𝐹‘(𝑋 + 𝑔)) − if(0 < 𝑔, 𝑅, 𝐿)) / 𝑔)))‘𝑟) · ((𝑜 ∈ (-π[,]π) ↦ if(𝑜 = 0, 1, (𝑜 / (2 · (sin‘(𝑜 / 2))))))‘𝑟)))‘𝑧) · ((𝑑 ∈ (-π[,]π) ↦ (sin‘((𝑐 + (1 / 2)) · 𝑑)))‘𝑧)))‘𝑠) d𝑠 / π)) = (𝑘 ∈ ℕ ↦ (∫(0(,)π)((𝑧 ∈ (-π[,]π) ↦ (((𝑟 ∈ (-π[,]π) ↦ (((𝑔 ∈ (-π[,]π) ↦ if(𝑔 = 0, 0, (((𝐹‘(𝑋 + 𝑔)) − if(0 < 𝑔, 𝑅, 𝐿)) / 𝑔)))‘𝑟) · ((𝑜 ∈ (-π[,]π) ↦ if(𝑜 = 0, 1, (𝑜 / (2 · (sin‘(𝑜 / 2))))))‘𝑟)))‘𝑧) · ((𝑑 ∈ (-π[,]π) ↦ (sin‘((𝑘 + (1 / 2)) · 𝑑)))‘𝑧)))‘𝑠) d𝑠 / π))
345 eqid 2728 . . . . . . . 8 ((𝑟 ∈ (-π[,]π) ↦ (((𝑔 ∈ (-π[,]π) ↦ if(𝑔 = 0, 0, (((𝐹‘(𝑋 + 𝑔)) − if(0 < 𝑔, 𝑅, 𝐿)) / 𝑔)))‘𝑟) · ((𝑜 ∈ (-π[,]π) ↦ if(𝑜 = 0, 1, (𝑜 / (2 · (sin‘(𝑜 / 2))))))‘𝑟))) ↾ (𝑒[,]π)) = ((𝑟 ∈ (-π[,]π) ↦ (((𝑔 ∈ (-π[,]π) ↦ if(𝑔 = 0, 0, (((𝐹‘(𝑋 + 𝑔)) − if(0 < 𝑔, 𝑅, 𝐿)) / 𝑔)))‘𝑟) · ((𝑜 ∈ (-π[,]π) ↦ if(𝑜 = 0, 1, (𝑜 / (2 · (sin‘(𝑜 / 2))))))‘𝑟))) ↾ (𝑒[,]π))
346 eqid 2728 . . . . . . . 8 ({𝑒, π} ∪ (ran (𝑗 ∈ (0...𝑁) ↦ ((𝑉𝑗) − 𝑋)) ∩ (𝑒(,)π))) = ({𝑒, π} ∪ (ran (𝑗 ∈ (0...𝑁) ↦ ((𝑉𝑗) − 𝑋)) ∩ (𝑒(,)π)))
347 eqid 2728 . . . . . . . 8 ((♯‘({𝑒, π} ∪ (ran (𝑗 ∈ (0...𝑁) ↦ ((𝑉𝑗) − 𝑋)) ∩ (𝑒(,)π)))) − 1) = ((♯‘({𝑒, π} ∪ (ran (𝑗 ∈ (0...𝑁) ↦ ((𝑉𝑗) − 𝑋)) ∩ (𝑒(,)π)))) − 1)
348 isoeq1 7319 . . . . . . . . 9 (𝑢 = 𝑣 → (𝑢 Isom < , < ((0...((♯‘({𝑒, π} ∪ (ran (𝑗 ∈ (0...𝑁) ↦ ((𝑉𝑗) − 𝑋)) ∩ (𝑒(,)π)))) − 1)), ({𝑒, π} ∪ (ran (𝑗 ∈ (0...𝑁) ↦ ((𝑉𝑗) − 𝑋)) ∩ (𝑒(,)π)))) ↔ 𝑣 Isom < , < ((0...((♯‘({𝑒, π} ∪ (ran (𝑗 ∈ (0...𝑁) ↦ ((𝑉𝑗) − 𝑋)) ∩ (𝑒(,)π)))) − 1)), ({𝑒, π} ∪ (ran (𝑗 ∈ (0...𝑁) ↦ ((𝑉𝑗) − 𝑋)) ∩ (𝑒(,)π))))))
349348cbviotavw 6502 . . . . . . . 8 (℩𝑢𝑢 Isom < , < ((0...((♯‘({𝑒, π} ∪ (ran (𝑗 ∈ (0...𝑁) ↦ ((𝑉𝑗) − 𝑋)) ∩ (𝑒(,)π)))) − 1)), ({𝑒, π} ∪ (ran (𝑗 ∈ (0...𝑁) ↦ ((𝑉𝑗) − 𝑋)) ∩ (𝑒(,)π))))) = (℩𝑣𝑣 Isom < , < ((0...((♯‘({𝑒, π} ∪ (ran (𝑗 ∈ (0...𝑁) ↦ ((𝑉𝑗) − 𝑋)) ∩ (𝑒(,)π)))) − 1)), ({𝑒, π} ∪ (ran (𝑗 ∈ (0...𝑁) ↦ ((𝑉𝑗) − 𝑋)) ∩ (𝑒(,)π)))))
350 eqid 2728 . . . . . . . 8 (𝑎 ∈ (0..^𝑁)(((℩𝑢𝑢 Isom < , < ((0...((♯‘({𝑒, π} ∪ (ran (𝑗 ∈ (0...𝑁) ↦ ((𝑉𝑗) − 𝑋)) ∩ (𝑒(,)π)))) − 1)), ({𝑒, π} ∪ (ran (𝑗 ∈ (0...𝑁) ↦ ((𝑉𝑗) − 𝑋)) ∩ (𝑒(,)π)))))‘𝑏)(,)((℩𝑢𝑢 Isom < , < ((0...((♯‘({𝑒, π} ∪ (ran (𝑗 ∈ (0...𝑁) ↦ ((𝑉𝑗) − 𝑋)) ∩ (𝑒(,)π)))) − 1)), ({𝑒, π} ∪ (ran (𝑗 ∈ (0...𝑁) ↦ ((𝑉𝑗) − 𝑋)) ∩ (𝑒(,)π)))))‘(𝑏 + 1))) ⊆ (((𝑗 ∈ (0...𝑁) ↦ ((𝑉𝑗) − 𝑋))‘𝑎)(,)((𝑗 ∈ (0...𝑁) ↦ ((𝑉𝑗) − 𝑋))‘(𝑎 + 1)))) = (𝑎 ∈ (0..^𝑁)(((℩𝑢𝑢 Isom < , < ((0...((♯‘({𝑒, π} ∪ (ran (𝑗 ∈ (0...𝑁) ↦ ((𝑉𝑗) − 𝑋)) ∩ (𝑒(,)π)))) − 1)), ({𝑒, π} ∪ (ran (𝑗 ∈ (0...𝑁) ↦ ((𝑉𝑗) − 𝑋)) ∩ (𝑒(,)π)))))‘𝑏)(,)((℩𝑢𝑢 Isom < , < ((0...((♯‘({𝑒, π} ∪ (ran (𝑗 ∈ (0...𝑁) ↦ ((𝑉𝑗) − 𝑋)) ∩ (𝑒(,)π)))) − 1)), ({𝑒, π} ∪ (ran (𝑗 ∈ (0...𝑁) ↦ ((𝑉𝑗) − 𝑋)) ∩ (𝑒(,)π)))))‘(𝑏 + 1))) ⊆ (((𝑗 ∈ (0...𝑁) ↦ ((𝑉𝑗) − 𝑋))‘𝑎)(,)((𝑗 ∈ (0...𝑁) ↦ ((𝑉𝑗) − 𝑋))‘(𝑎 + 1))))
351324cbvitgv 25699 . . . . . . . . . . . 12 ∫(0(,)𝑒)(((𝑟 ∈ (-π[,]π) ↦ (((𝑔 ∈ (-π[,]π) ↦ if(𝑔 = 0, 0, (((𝐹‘(𝑋 + 𝑔)) − if(0 < 𝑔, 𝑅, 𝐿)) / 𝑔)))‘𝑟) · ((𝑜 ∈ (-π[,]π) ↦ if(𝑜 = 0, 1, (𝑜 / (2 · (sin‘(𝑜 / 2))))))‘𝑟)))‘𝑎) · (sin‘((𝑏 + (1 / 2)) · 𝑎))) d𝑎 = ∫(0(,)𝑒)(((𝑟 ∈ (-π[,]π) ↦ (((𝑔 ∈ (-π[,]π) ↦ if(𝑔 = 0, 0, (((𝐹‘(𝑋 + 𝑔)) − if(0 < 𝑔, 𝑅, 𝐿)) / 𝑔)))‘𝑟) · ((𝑜 ∈ (-π[,]π) ↦ if(𝑜 = 0, 1, (𝑜 / (2 · (sin‘(𝑜 / 2))))))‘𝑟)))‘𝑠) · (sin‘((𝑏 + (1 / 2)) · 𝑠))) d𝑠
352351fveq2i 6894 . . . . . . . . . . 11 (abs‘∫(0(,)𝑒)(((𝑟 ∈ (-π[,]π) ↦ (((𝑔 ∈ (-π[,]π) ↦ if(𝑔 = 0, 0, (((𝐹‘(𝑋 + 𝑔)) − if(0 < 𝑔, 𝑅, 𝐿)) / 𝑔)))‘𝑟) · ((𝑜 ∈ (-π[,]π) ↦ if(𝑜 = 0, 1, (𝑜 / (2 · (sin‘(𝑜 / 2))))))‘𝑟)))‘𝑎) · (sin‘((𝑏 + (1 / 2)) · 𝑎))) d𝑎) = (abs‘∫(0(,)𝑒)(((𝑟 ∈ (-π[,]π) ↦ (((𝑔 ∈ (-π[,]π) ↦ if(𝑔 = 0, 0, (((𝐹‘(𝑋 + 𝑔)) − if(0 < 𝑔, 𝑅, 𝐿)) / 𝑔)))‘𝑟) · ((𝑜 ∈ (-π[,]π) ↦ if(𝑜 = 0, 1, (𝑜 / (2 · (sin‘(𝑜 / 2))))))‘𝑟)))‘𝑠) · (sin‘((𝑏 + (1 / 2)) · 𝑠))) d𝑠)
353352breq1i 5149 . . . . . . . . . 10 ((abs‘∫(0(,)𝑒)(((𝑟 ∈ (-π[,]π) ↦ (((𝑔 ∈ (-π[,]π) ↦ if(𝑔 = 0, 0, (((𝐹‘(𝑋 + 𝑔)) − if(0 < 𝑔, 𝑅, 𝐿)) / 𝑔)))‘𝑟) · ((𝑜 ∈ (-π[,]π) ↦ if(𝑜 = 0, 1, (𝑜 / (2 · (sin‘(𝑜 / 2))))))‘𝑟)))‘𝑎) · (sin‘((𝑏 + (1 / 2)) · 𝑎))) d𝑎) < (𝑞 / 2) ↔ (abs‘∫(0(,)𝑒)(((𝑟 ∈ (-π[,]π) ↦ (((𝑔 ∈ (-π[,]π) ↦ if(𝑔 = 0, 0, (((𝐹‘(𝑋 + 𝑔)) − if(0 < 𝑔, 𝑅, 𝐿)) / 𝑔)))‘𝑟) · ((𝑜 ∈ (-π[,]π) ↦ if(𝑜 = 0, 1, (𝑜 / (2 · (sin‘(𝑜 / 2))))))‘𝑟)))‘𝑠) · (sin‘((𝑏 + (1 / 2)) · 𝑠))) d𝑠) < (𝑞 / 2))
354353anbi2i 622 . . . . . . . . 9 (((((𝜑𝑞 ∈ ℝ+) ∧ 𝑒 ∈ (0(,)π)) ∧ 𝑏 ∈ ℕ) ∧ (abs‘∫(0(,)𝑒)(((𝑟 ∈ (-π[,]π) ↦ (((𝑔 ∈ (-π[,]π) ↦ if(𝑔 = 0, 0, (((𝐹‘(𝑋 + 𝑔)) − if(0 < 𝑔, 𝑅, 𝐿)) / 𝑔)))‘𝑟) · ((𝑜 ∈ (-π[,]π) ↦ if(𝑜 = 0, 1, (𝑜 / (2 · (sin‘(𝑜 / 2))))))‘𝑟)))‘𝑎) · (sin‘((𝑏 + (1 / 2)) · 𝑎))) d𝑎) < (𝑞 / 2)) ↔ ((((𝜑𝑞 ∈ ℝ+) ∧ 𝑒 ∈ (0(,)π)) ∧ 𝑏 ∈ ℕ) ∧ (abs‘∫(0(,)𝑒)(((𝑟 ∈ (-π[,]π) ↦ (((𝑔 ∈ (-π[,]π) ↦ if(𝑔 = 0, 0, (((𝐹‘(𝑋 + 𝑔)) − if(0 < 𝑔, 𝑅, 𝐿)) / 𝑔)))‘𝑟) · ((𝑜 ∈ (-π[,]π) ↦ if(𝑜 = 0, 1, (𝑜 / (2 · (sin‘(𝑜 / 2))))))‘𝑟)))‘𝑠) · (sin‘((𝑏 + (1 / 2)) · 𝑠))) d𝑠) < (𝑞 / 2)))
355324cbvitgv 25699 . . . . . . . . . . 11 ∫(𝑒(,)π)(((𝑟 ∈ (-π[,]π) ↦ (((𝑔 ∈ (-π[,]π) ↦ if(𝑔 = 0, 0, (((𝐹‘(𝑋 + 𝑔)) − if(0 < 𝑔, 𝑅, 𝐿)) / 𝑔)))‘𝑟) · ((𝑜 ∈ (-π[,]π) ↦ if(𝑜 = 0, 1, (𝑜 / (2 · (sin‘(𝑜 / 2))))))‘𝑟)))‘𝑎) · (sin‘((𝑏 + (1 / 2)) · 𝑎))) d𝑎 = ∫(𝑒(,)π)(((𝑟 ∈ (-π[,]π) ↦ (((𝑔 ∈ (-π[,]π) ↦ if(𝑔 = 0, 0, (((𝐹‘(𝑋 + 𝑔)) − if(0 < 𝑔, 𝑅, 𝐿)) / 𝑔)))‘𝑟) · ((𝑜 ∈ (-π[,]π) ↦ if(𝑜 = 0, 1, (𝑜 / (2 · (sin‘(𝑜 / 2))))))‘𝑟)))‘𝑠) · (sin‘((𝑏 + (1 / 2)) · 𝑠))) d𝑠
356355fveq2i 6894 . . . . . . . . . 10 (abs‘∫(𝑒(,)π)(((𝑟 ∈ (-π[,]π) ↦ (((𝑔 ∈ (-π[,]π) ↦ if(𝑔 = 0, 0, (((𝐹‘(𝑋 + 𝑔)) − if(0 < 𝑔, 𝑅, 𝐿)) / 𝑔)))‘𝑟) · ((𝑜 ∈ (-π[,]π) ↦ if(𝑜 = 0, 1, (𝑜 / (2 · (sin‘(𝑜 / 2))))))‘𝑟)))‘𝑎) · (sin‘((𝑏 + (1 / 2)) · 𝑎))) d𝑎) = (abs‘∫(𝑒(,)π)(((𝑟 ∈ (-π[,]π) ↦ (((𝑔 ∈ (-π[,]π) ↦ if(𝑔 = 0, 0, (((𝐹‘(𝑋 + 𝑔)) − if(0 < 𝑔, 𝑅, 𝐿)) / 𝑔)))‘𝑟) · ((𝑜 ∈ (-π[,]π) ↦ if(𝑜 = 0, 1, (𝑜 / (2 · (sin‘(𝑜 / 2))))))‘𝑟)))‘𝑠) · (sin‘((𝑏 + (1 / 2)) · 𝑠))) d𝑠)
357356breq1i 5149 . . . . . . . . 9 ((abs‘∫(𝑒(,)π)(((𝑟 ∈ (-π[,]π) ↦ (((𝑔 ∈ (-π[,]π) ↦ if(𝑔 = 0, 0, (((𝐹‘(𝑋 + 𝑔)) − if(0 < 𝑔, 𝑅, 𝐿)) / 𝑔)))‘𝑟) · ((𝑜 ∈ (-π[,]π) ↦ if(𝑜 = 0, 1, (𝑜 / (2 · (sin‘(𝑜 / 2))))))‘𝑟)))‘𝑎) · (sin‘((𝑏 + (1 / 2)) · 𝑎))) d𝑎) < (𝑞 / 2) ↔ (abs‘∫(𝑒(,)π)(((𝑟 ∈ (-π[,]π) ↦ (((𝑔 ∈ (-π[,]π) ↦ if(𝑔 = 0, 0, (((𝐹‘(𝑋 + 𝑔)) − if(0 < 𝑔, 𝑅, 𝐿)) / 𝑔)))‘𝑟) · ((𝑜 ∈ (-π[,]π) ↦ if(𝑜 = 0, 1, (𝑜 / (2 · (sin‘(𝑜 / 2))))))‘𝑟)))‘𝑠) · (sin‘((𝑏 + (1 / 2)) · 𝑠))) d𝑠) < (𝑞 / 2))
358354, 357anbi12i 627 . . . . . . . 8 ((((((𝜑𝑞 ∈ ℝ+) ∧ 𝑒 ∈ (0(,)π)) ∧ 𝑏 ∈ ℕ) ∧ (abs‘∫(0(,)𝑒)(((𝑟 ∈ (-π[,]π) ↦ (((𝑔 ∈ (-π[,]π) ↦ if(𝑔 = 0, 0, (((𝐹‘(𝑋 + 𝑔)) − if(0 < 𝑔, 𝑅, 𝐿)) / 𝑔)))‘𝑟) · ((𝑜 ∈ (-π[,]π) ↦ if(𝑜 = 0, 1, (𝑜 / (2 · (sin‘(𝑜 / 2))))))‘𝑟)))‘𝑎) · (sin‘((𝑏 + (1 / 2)) · 𝑎))) d𝑎) < (𝑞 / 2)) ∧ (abs‘∫(𝑒(,)π)(((𝑟 ∈ (-π[,]π) ↦ (((𝑔 ∈ (-π[,]π) ↦ if(𝑔 = 0, 0, (((𝐹‘(𝑋 + 𝑔)) − if(0 < 𝑔, 𝑅, 𝐿)) / 𝑔)))‘𝑟) · ((𝑜 ∈ (-π[,]π) ↦ if(𝑜 = 0, 1, (𝑜 / (2 · (sin‘(𝑜 / 2))))))‘𝑟)))‘𝑎) · (sin‘((𝑏 + (1 / 2)) · 𝑎))) d𝑎) < (𝑞 / 2)) ↔ (((((𝜑𝑞 ∈ ℝ+) ∧ 𝑒 ∈ (0(,)π)) ∧ 𝑏 ∈ ℕ) ∧ (abs‘∫(0(,)𝑒)(((𝑟 ∈ (-π[,]π) ↦ (((𝑔 ∈ (-π[,]π) ↦ if(𝑔 = 0, 0, (((𝐹‘(𝑋 + 𝑔)) − if(0 < 𝑔, 𝑅, 𝐿)) / 𝑔)))‘𝑟) · ((𝑜 ∈ (-π[,]π) ↦ if(𝑜 = 0, 1, (𝑜 / (2 · (sin‘(𝑜 / 2))))))‘𝑟)))‘𝑠) · (sin‘((𝑏 + (1 / 2)) · 𝑠))) d𝑠) < (𝑞 / 2)) ∧ (abs‘∫(𝑒(,)π)(((𝑟 ∈ (-π[,]π) ↦ (((𝑔 ∈ (-π[,]π) ↦ if(𝑔 = 0, 0, (((𝐹‘(𝑋 + 𝑔)) − if(0 < 𝑔, 𝑅, 𝐿)) / 𝑔)))‘𝑟) · ((𝑜 ∈ (-π[,]π) ↦ if(𝑜 = 0, 1, (𝑜 / (2 · (sin‘(𝑜 / 2))))))‘𝑟)))‘𝑠) · (sin‘((𝑏 + (1 / 2)) · 𝑠))) d𝑠) < (𝑞 / 2)))
35943, 44, 45, 76, 77, 78, 122, 132, 182, 213, 225, 236, 246, 254, 258, 261, 265, 340, 344, 284, 285, 286, 287, 311, 345, 346, 347, 349, 319, 350, 358fourierdlem104 45592 . . . . . . 7 (𝜑 → (𝑚 ∈ ℕ ↦ ∫(0(,)π)((𝐹‘(𝑋 + 𝑠)) · ((𝐷𝑚)‘𝑠)) d𝑠) ⇝ (𝑅 / 2))
360 eqidd 2729 . . . . . . . . 9 ((𝜑𝑛 ∈ ℕ) → (𝑚 ∈ ℕ ↦ ∫(-π(,)0)((𝐹‘(𝑋 + 𝑠)) · ((𝐷𝑚)‘𝑠)) d𝑠) = (𝑚 ∈ ℕ ↦ ∫(-π(,)0)((𝐹‘(𝑋 + 𝑠)) · ((𝐷𝑚)‘𝑠)) d𝑠))
361270adantl 481 . . . . . . . . 9 (((𝜑𝑛 ∈ ℕ) ∧ 𝑚 = 𝑛) → ∫(-π(,)0)((𝐹‘(𝑋 + 𝑠)) · ((𝐷𝑚)‘𝑠)) d𝑠 = ∫(-π(,)0)((𝐹‘(𝑋 + 𝑠)) · ((𝐷𝑛)‘𝑠)) d𝑠)
362 simpr 484 . . . . . . . . 9 ((𝜑𝑛 ∈ ℕ) → 𝑛 ∈ ℕ)
363 elioore 13380 . . . . . . . . . . 11 (𝑠 ∈ (-π(,)0) → 𝑠 ∈ ℝ)
36443adantr 480 . . . . . . . . . . . . . 14 ((𝜑𝑠 ∈ ℝ) → 𝐹:ℝ⟶ℝ)
36544adantr 480 . . . . . . . . . . . . . . 15 ((𝜑𝑠 ∈ ℝ) → 𝑋 ∈ ℝ)
366 simpr 484 . . . . . . . . . . . . . . 15 ((𝜑𝑠 ∈ ℝ) → 𝑠 ∈ ℝ)
367365, 366readdcld 11267 . . . . . . . . . . . . . 14 ((𝜑𝑠 ∈ ℝ) → (𝑋 + 𝑠) ∈ ℝ)
368364, 367ffvelcdmd 7089 . . . . . . . . . . . . 13 ((𝜑𝑠 ∈ ℝ) → (𝐹‘(𝑋 + 𝑠)) ∈ ℝ)
369368adantlr 714 . . . . . . . . . . . 12 (((𝜑𝑛 ∈ ℕ) ∧ 𝑠 ∈ ℝ) → (𝐹‘(𝑋 + 𝑠)) ∈ ℝ)
370288dirkerre 45477 . . . . . . . . . . . . 13 ((𝑛 ∈ ℕ ∧ 𝑠 ∈ ℝ) → ((𝐷𝑛)‘𝑠) ∈ ℝ)
371370adantll 713 . . . . . . . . . . . 12 (((𝜑𝑛 ∈ ℕ) ∧ 𝑠 ∈ ℝ) → ((𝐷𝑛)‘𝑠) ∈ ℝ)
372369, 371remulcld 11268 . . . . . . . . . . 11 (((𝜑𝑛 ∈ ℕ) ∧ 𝑠 ∈ ℝ) → ((𝐹‘(𝑋 + 𝑠)) · ((𝐷𝑛)‘𝑠)) ∈ ℝ)
373363, 372sylan2 592 . . . . . . . . . 10 (((𝜑𝑛 ∈ ℕ) ∧ 𝑠 ∈ (-π(,)0)) → ((𝐹‘(𝑋 + 𝑠)) · ((𝐷𝑛)‘𝑠)) ∈ ℝ)
374 ioossicc 13436 . . . . . . . . . . . . 13 (-π(,)0) ⊆ (-π[,]0)
37561leidi 11772 . . . . . . . . . . . . . 14 -π ≤ -π
37662, 54, 60ltleii 11361 . . . . . . . . . . . . . 14 0 ≤ π
377 iccss 13418 . . . . . . . . . . . . . 14 (((-π ∈ ℝ ∧ π ∈ ℝ) ∧ (-π ≤ -π ∧ 0 ≤ π)) → (-π[,]0) ⊆ (-π[,]π))
37861, 54, 375, 376, 377mp4an 692 . . . . . . . . . . . . 13 (-π[,]0) ⊆ (-π[,]π)
379374, 378sstri 3987 . . . . . . . . . . . 12 (-π(,)0) ⊆ (-π[,]π)
380379a1i 11 . . . . . . . . . . 11 ((𝜑𝑛 ∈ ℕ) → (-π(,)0) ⊆ (-π[,]π))
381 ioombl 25487 . . . . . . . . . . . 12 (-π(,)0) ∈ dom vol
382381a1i 11 . . . . . . . . . . 11 ((𝜑𝑛 ∈ ℕ) → (-π(,)0) ∈ dom vol)
38343adantr 480 . . . . . . . . . . . . . 14 ((𝜑𝑠 ∈ (-π[,]π)) → 𝐹:ℝ⟶ℝ)
38444adantr 480 . . . . . . . . . . . . . . 15 ((𝜑𝑠 ∈ (-π[,]π)) → 𝑋 ∈ ℝ)
38556, 55iccssred 13437 . . . . . . . . . . . . . . . 16 (𝜑 → (-π[,]π) ⊆ ℝ)
386385sselda 3978 . . . . . . . . . . . . . . 15 ((𝜑𝑠 ∈ (-π[,]π)) → 𝑠 ∈ ℝ)
387384, 386readdcld 11267 . . . . . . . . . . . . . 14 ((𝜑𝑠 ∈ (-π[,]π)) → (𝑋 + 𝑠) ∈ ℝ)
388383, 387ffvelcdmd 7089 . . . . . . . . . . . . 13 ((𝜑𝑠 ∈ (-π[,]π)) → (𝐹‘(𝑋 + 𝑠)) ∈ ℝ)
389388adantlr 714 . . . . . . . . . . . 12 (((𝜑𝑛 ∈ ℕ) ∧ 𝑠 ∈ (-π[,]π)) → (𝐹‘(𝑋 + 𝑠)) ∈ ℝ)
390 iccssre 13432 . . . . . . . . . . . . . . . 16 ((-π ∈ ℝ ∧ π ∈ ℝ) → (-π[,]π) ⊆ ℝ)
39161, 54, 390mp2an 691 . . . . . . . . . . . . . . 15 (-π[,]π) ⊆ ℝ
392391sseli 3974 . . . . . . . . . . . . . 14 (𝑠 ∈ (-π[,]π) → 𝑠 ∈ ℝ)
393392, 370sylan2 592 . . . . . . . . . . . . 13 ((𝑛 ∈ ℕ ∧ 𝑠 ∈ (-π[,]π)) → ((𝐷𝑛)‘𝑠) ∈ ℝ)
394393adantll 713 . . . . . . . . . . . 12 (((𝜑𝑛 ∈ ℕ) ∧ 𝑠 ∈ (-π[,]π)) → ((𝐷𝑛)‘𝑠) ∈ ℝ)
395389, 394remulcld 11268 . . . . . . . . . . 11 (((𝜑𝑛 ∈ ℕ) ∧ 𝑠 ∈ (-π[,]π)) → ((𝐹‘(𝑋 + 𝑠)) · ((𝐷𝑛)‘𝑠)) ∈ ℝ)
39661a1i 11 . . . . . . . . . . . 12 ((𝜑𝑛 ∈ ℕ) → -π ∈ ℝ)
39754a1i 11 . . . . . . . . . . . 12 ((𝜑𝑛 ∈ ℕ) → π ∈ ℝ)
39843adantr 480 . . . . . . . . . . . 12 ((𝜑𝑛 ∈ ℕ) → 𝐹:ℝ⟶ℝ)
39944adantr 480 . . . . . . . . . . . 12 ((𝜑𝑛 ∈ ℕ) → 𝑋 ∈ ℝ)
40076adantr 480 . . . . . . . . . . . 12 ((𝜑𝑛 ∈ ℕ) → 𝑁 ∈ ℕ)
40177adantr 480 . . . . . . . . . . . 12 ((𝜑𝑛 ∈ ℕ) → 𝑉 ∈ ((𝑛 ∈ ℕ ↦ {𝑝 ∈ (ℝ ↑m (0...𝑛)) ∣ (((𝑝‘0) = (-π + 𝑋) ∧ (𝑝𝑛) = (π + 𝑋)) ∧ ∀𝑖 ∈ (0..^𝑛)(𝑝𝑖) < (𝑝‘(𝑖 + 1)))})‘𝑁))
402122adantlr 714 . . . . . . . . . . . 12 (((𝜑𝑛 ∈ ℕ) ∧ 𝑖 ∈ (0..^𝑁)) → (𝐹 ↾ ((𝑉𝑖)(,)(𝑉‘(𝑖 + 1)))) ∈ (((𝑉𝑖)(,)(𝑉‘(𝑖 + 1)))–cn→ℂ))
403225adantlr 714 . . . . . . . . . . . 12 (((𝜑𝑛 ∈ ℕ) ∧ 𝑖 ∈ (0..^𝑁)) → if(((𝑑 ∈ (-π(,]π) ↦ if(𝑑 = π, -π, 𝑑))‘((𝑐 ∈ ℝ ↦ (𝑐 + ((⌊‘((π − 𝑐) / 𝑇)) · 𝑇)))‘(𝑉𝑖))) = (𝑄‘((𝑦 ∈ ℝ ↦ sup({𝑓 ∈ (0..^𝑀) ∣ (𝑄𝑓) ≤ ((𝑑 ∈ (-π(,]π) ↦ if(𝑑 = π, -π, 𝑑))‘((𝑐 ∈ ℝ ↦ (𝑐 + ((⌊‘((π − 𝑐) / 𝑇)) · 𝑇)))‘𝑦))}, ℝ, < ))‘(𝑉𝑖))), ((𝑗 ∈ (0..^𝑀) ↦ 𝑗 / 𝑖𝐶)‘((𝑦 ∈ ℝ ↦ sup({𝑓 ∈ (0..^𝑀) ∣ (𝑄𝑓) ≤ ((𝑑 ∈ (-π(,]π) ↦ if(𝑑 = π, -π, 𝑑))‘((𝑐 ∈ ℝ ↦ (𝑐 + ((⌊‘((π − 𝑐) / 𝑇)) · 𝑇)))‘𝑦))}, ℝ, < ))‘(𝑉𝑖))), (𝐹‘((𝑑 ∈ (-π(,]π) ↦ if(𝑑 = π, -π, 𝑑))‘((𝑐 ∈ ℝ ↦ (𝑐 + ((⌊‘((π − 𝑐) / 𝑇)) · 𝑇)))‘(𝑉𝑖))))) ∈ ((𝐹 ↾ ((𝑉𝑖)(,)(𝑉‘(𝑖 + 1)))) lim (𝑉𝑖)))
404236adantlr 714 . . . . . . . . . . . 12 (((𝜑𝑛 ∈ ℕ) ∧ 𝑖 ∈ (0..^𝑁)) → if(((𝑒 ∈ ℝ ↦ (𝑒 + ((⌊‘((π − 𝑒) / 𝑇)) · 𝑇)))‘(𝑉‘(𝑖 + 1))) = (𝑄‘(((𝑦 ∈ ℝ ↦ sup({ ∈ (0..^𝑀) ∣ (𝑄) ≤ ((𝑔 ∈ (-π(,]π) ↦ if(𝑔 = π, -π, 𝑔))‘((𝑒 ∈ ℝ ↦ (𝑒 + ((⌊‘((π − 𝑒) / 𝑇)) · 𝑇)))‘𝑦))}, ℝ, < ))‘(𝑉𝑖)) + 1)), ((𝑗 ∈ (0..^𝑀) ↦ 𝑗 / 𝑖𝑈)‘((𝑦 ∈ ℝ ↦ sup({ ∈ (0..^𝑀) ∣ (𝑄) ≤ ((𝑔 ∈ (-π(,]π) ↦ if(𝑔 = π, -π, 𝑔))‘((𝑒 ∈ ℝ ↦ (𝑒 + ((⌊‘((π − 𝑒) / 𝑇)) · 𝑇)))‘𝑦))}, ℝ, < ))‘(𝑉𝑖))), (𝐹‘((𝑒 ∈ ℝ ↦ (𝑒 + ((⌊‘((π − 𝑒) / 𝑇)) · 𝑇)))‘(𝑉‘(𝑖 + 1))))) ∈ ((𝐹 ↾ ((𝑉𝑖)(,)(𝑉‘(𝑖 + 1)))) lim (𝑉‘(𝑖 + 1))))
405288dirkercncf 45489 . . . . . . . . . . . . 13 (𝑛 ∈ ℕ → (𝐷𝑛) ∈ (ℝ–cn→ℝ))
406405adantl 481 . . . . . . . . . . . 12 ((𝜑𝑛 ∈ ℕ) → (𝐷𝑛) ∈ (ℝ–cn→ℝ))
407 eqid 2728 . . . . . . . . . . . 12 (𝑠 ∈ (-π[,]π) ↦ ((𝐹‘(𝑋 + 𝑠)) · ((𝐷𝑛)‘𝑠))) = (𝑠 ∈ (-π[,]π) ↦ ((𝐹‘(𝑋 + 𝑠)) · ((𝐷𝑛)‘𝑠)))
408396, 397, 398, 399, 45, 400, 401, 402, 403, 404, 319, 51, 406, 407fourierdlem84 45572 . . . . . . . . . . 11 ((𝜑𝑛 ∈ ℕ) → (𝑠 ∈ (-π[,]π) ↦ ((𝐹‘(𝑋 + 𝑠)) · ((𝐷𝑛)‘𝑠))) ∈ 𝐿1)
409380, 382, 395, 408iblss 25727 . . . . . . . . . 10 ((𝜑𝑛 ∈ ℕ) → (𝑠 ∈ (-π(,)0) ↦ ((𝐹‘(𝑋 + 𝑠)) · ((𝐷𝑛)‘𝑠))) ∈ 𝐿1)
410373, 409itgcl 25706 . . . . . . . . 9 ((𝜑𝑛 ∈ ℕ) → ∫(-π(,)0)((𝐹‘(𝑋 + 𝑠)) · ((𝐷𝑛)‘𝑠)) d𝑠 ∈ ℂ)
411360, 361, 362, 410fvmptd 7006 . . . . . . . 8 ((𝜑𝑛 ∈ ℕ) → ((𝑚 ∈ ℕ ↦ ∫(-π(,)0)((𝐹‘(𝑋 + 𝑠)) · ((𝐷𝑚)‘𝑠)) d𝑠)‘𝑛) = ∫(-π(,)0)((𝐹‘(𝑋 + 𝑠)) · ((𝐷𝑛)‘𝑠)) d𝑠)
412411, 410eqeltrd 2829 . . . . . . 7 ((𝜑𝑛 ∈ ℕ) → ((𝑚 ∈ ℕ ↦ ∫(-π(,)0)((𝐹‘(𝑋 + 𝑠)) · ((𝐷𝑚)‘𝑠)) d𝑠)‘𝑛) ∈ ℂ)
413 eqidd 2729 . . . . . . . . 9 ((𝜑𝑛 ∈ ℕ) → (𝑚 ∈ ℕ ↦ ∫(0(,)π)((𝐹‘(𝑋 + 𝑠)) · ((𝐷𝑚)‘𝑠)) d𝑠) = (𝑚 ∈ ℕ ↦ ∫(0(,)π)((𝐹‘(𝑋 + 𝑠)) · ((𝐷𝑚)‘𝑠)) d𝑠))
414339adantl 481 . . . . . . . . 9 (((𝜑𝑛 ∈ ℕ) ∧ 𝑚 = 𝑛) → ∫(0(,)π)((𝐹‘(𝑋 + 𝑠)) · ((𝐷𝑚)‘𝑠)) d𝑠 = ∫(0(,)π)((𝐹‘(𝑋 + 𝑠)) · ((𝐷𝑛)‘𝑠)) d𝑠)
41543adantr 480 . . . . . . . . . . . . 13 ((𝜑𝑠 ∈ (0(,)π)) → 𝐹:ℝ⟶ℝ)
41644adantr 480 . . . . . . . . . . . . . 14 ((𝜑𝑠 ∈ (0(,)π)) → 𝑋 ∈ ℝ)
417 elioore 13380 . . . . . . . . . . . . . . 15 (𝑠 ∈ (0(,)π) → 𝑠 ∈ ℝ)
418417adantl 481 . . . . . . . . . . . . . 14 ((𝜑𝑠 ∈ (0(,)π)) → 𝑠 ∈ ℝ)
419416, 418readdcld 11267 . . . . . . . . . . . . 13 ((𝜑𝑠 ∈ (0(,)π)) → (𝑋 + 𝑠) ∈ ℝ)
420415, 419ffvelcdmd 7089 . . . . . . . . . . . 12 ((𝜑𝑠 ∈ (0(,)π)) → (𝐹‘(𝑋 + 𝑠)) ∈ ℝ)
421420adantlr 714 . . . . . . . . . . 11 (((𝜑𝑛 ∈ ℕ) ∧ 𝑠 ∈ (0(,)π)) → (𝐹‘(𝑋 + 𝑠)) ∈ ℝ)
422417, 370sylan2 592 . . . . . . . . . . . 12 ((𝑛 ∈ ℕ ∧ 𝑠 ∈ (0(,)π)) → ((𝐷𝑛)‘𝑠) ∈ ℝ)
423422adantll 713 . . . . . . . . . . 11 (((𝜑𝑛 ∈ ℕ) ∧ 𝑠 ∈ (0(,)π)) → ((𝐷𝑛)‘𝑠) ∈ ℝ)
424421, 423remulcld 11268 . . . . . . . . . 10 (((𝜑𝑛 ∈ ℕ) ∧ 𝑠 ∈ (0(,)π)) → ((𝐹‘(𝑋 + 𝑠)) · ((𝐷𝑛)‘𝑠)) ∈ ℝ)
425 ioossicc 13436 . . . . . . . . . . . . 13 (0(,)π) ⊆ (0[,]π)
42661, 62, 59ltleii 11361 . . . . . . . . . . . . . 14 -π ≤ 0
42754leidi 11772 . . . . . . . . . . . . . 14 π ≤ π
428 iccss 13418 . . . . . . . . . . . . . 14 (((-π ∈ ℝ ∧ π ∈ ℝ) ∧ (-π ≤ 0 ∧ π ≤ π)) → (0[,]π) ⊆ (-π[,]π))
42961, 54, 426, 427, 428mp4an 692 . . . . . . . . . . . . 13 (0[,]π) ⊆ (-π[,]π)
430425, 429sstri 3987 . . . . . . . . . . . 12 (0(,)π) ⊆ (-π[,]π)
431430a1i 11 . . . . . . . . . . 11 ((𝜑𝑛 ∈ ℕ) → (0(,)π) ⊆ (-π[,]π))
432 ioombl 25487 . . . . . . . . . . . 12 (0(,)π) ∈ dom vol
433432a1i 11 . . . . . . . . . . 11 ((𝜑𝑛 ∈ ℕ) → (0(,)π) ∈ dom vol)
434431, 433, 395, 408iblss 25727 . . . . . . . . . 10 ((𝜑𝑛 ∈ ℕ) → (𝑠 ∈ (0(,)π) ↦ ((𝐹‘(𝑋 + 𝑠)) · ((𝐷𝑛)‘𝑠))) ∈ 𝐿1)
435424, 434itgcl 25706 . . . . . . . . 9 ((𝜑𝑛 ∈ ℕ) → ∫(0(,)π)((𝐹‘(𝑋 + 𝑠)) · ((𝐷𝑛)‘𝑠)) d𝑠 ∈ ℂ)
436413, 414, 362, 435fvmptd 7006 . . . . . . . 8 ((𝜑𝑛 ∈ ℕ) → ((𝑚 ∈ ℕ ↦ ∫(0(,)π)((𝐹‘(𝑋 + 𝑠)) · ((𝐷𝑚)‘𝑠)) d𝑠)‘𝑛) = ∫(0(,)π)((𝐹‘(𝑋 + 𝑠)) · ((𝐷𝑛)‘𝑠)) d𝑠)
437436, 435eqeltrd 2829 . . . . . . 7 ((𝜑𝑛 ∈ ℕ) → ((𝑚 ∈ ℕ ↦ ∫(0(,)π)((𝐹‘(𝑋 + 𝑠)) · ((𝐷𝑚)‘𝑠)) d𝑠)‘𝑛) ∈ ℂ)
438 eleq1w 2812 . . . . . . . . . . 11 (𝑚 = 𝑛 → (𝑚 ∈ ℕ ↔ 𝑛 ∈ ℕ))
439438anbi2d 629 . . . . . . . . . 10 (𝑚 = 𝑛 → ((𝜑𝑚 ∈ ℕ) ↔ (𝜑𝑛 ∈ ℕ)))
440 fveq2 6891 . . . . . . . . . . 11 (𝑚 = 𝑛 → (𝑍𝑚) = (𝑍𝑛))
441270, 339oveq12d 7432 . . . . . . . . . . 11 (𝑚 = 𝑛 → (∫(-π(,)0)((𝐹‘(𝑋 + 𝑠)) · ((𝐷𝑚)‘𝑠)) d𝑠 + ∫(0(,)π)((𝐹‘(𝑋 + 𝑠)) · ((𝐷𝑚)‘𝑠)) d𝑠) = (∫(-π(,)0)((𝐹‘(𝑋 + 𝑠)) · ((𝐷𝑛)‘𝑠)) d𝑠 + ∫(0(,)π)((𝐹‘(𝑋 + 𝑠)) · ((𝐷𝑛)‘𝑠)) d𝑠))
442440, 441eqeq12d 2744 . . . . . . . . . 10 (𝑚 = 𝑛 → ((𝑍𝑚) = (∫(-π(,)0)((𝐹‘(𝑋 + 𝑠)) · ((𝐷𝑚)‘𝑠)) d𝑠 + ∫(0(,)π)((𝐹‘(𝑋 + 𝑠)) · ((𝐷𝑚)‘𝑠)) d𝑠) ↔ (𝑍𝑛) = (∫(-π(,)0)((𝐹‘(𝑋 + 𝑠)) · ((𝐷𝑛)‘𝑠)) d𝑠 + ∫(0(,)π)((𝐹‘(𝑋 + 𝑠)) · ((𝐷𝑛)‘𝑠)) d𝑠)))
443439, 442imbi12d 344 . . . . . . . . 9 (𝑚 = 𝑛 → (((𝜑𝑚 ∈ ℕ) → (𝑍𝑚) = (∫(-π(,)0)((𝐹‘(𝑋 + 𝑠)) · ((𝐷𝑚)‘𝑠)) d𝑠 + ∫(0(,)π)((𝐹‘(𝑋 + 𝑠)) · ((𝐷𝑚)‘𝑠)) d𝑠)) ↔ ((𝜑𝑛 ∈ ℕ) → (𝑍𝑛) = (∫(-π(,)0)((𝐹‘(𝑋 + 𝑠)) · ((𝐷𝑛)‘𝑠)) d𝑠 + ∫(0(,)π)((𝐹‘(𝑋 + 𝑠)) · ((𝐷𝑛)‘𝑠)) d𝑠))))
444 oveq1 7421 . . . . . . . . . . . . . . . . 17 (𝑛 = 𝑚 → (𝑛 · 𝑥) = (𝑚 · 𝑥))
445444fveq2d 6895 . . . . . . . . . . . . . . . 16 (𝑛 = 𝑚 → (cos‘(𝑛 · 𝑥)) = (cos‘(𝑚 · 𝑥)))
446445oveq2d 7430 . . . . . . . . . . . . . . 15 (𝑛 = 𝑚 → ((𝐹𝑥) · (cos‘(𝑛 · 𝑥))) = ((𝐹𝑥) · (cos‘(𝑚 · 𝑥))))
447446adantr 480 . . . . . . . . . . . . . 14 ((𝑛 = 𝑚𝑥 ∈ (-π(,)π)) → ((𝐹𝑥) · (cos‘(𝑛 · 𝑥))) = ((𝐹𝑥) · (cos‘(𝑚 · 𝑥))))
448447itgeq2dv 25704 . . . . . . . . . . . . 13 (𝑛 = 𝑚 → ∫(-π(,)π)((𝐹𝑥) · (cos‘(𝑛 · 𝑥))) d𝑥 = ∫(-π(,)π)((𝐹𝑥) · (cos‘(𝑚 · 𝑥))) d𝑥)
449448oveq1d 7429 . . . . . . . . . . . 12 (𝑛 = 𝑚 → (∫(-π(,)π)((𝐹𝑥) · (cos‘(𝑛 · 𝑥))) d𝑥 / π) = (∫(-π(,)π)((𝐹𝑥) · (cos‘(𝑚 · 𝑥))) d𝑥 / π))
450449cbvmptv 5255 . . . . . . . . . . 11 (𝑛 ∈ ℕ0 ↦ (∫(-π(,)π)((𝐹𝑥) · (cos‘(𝑛 · 𝑥))) d𝑥 / π)) = (𝑚 ∈ ℕ0 ↦ (∫(-π(,)π)((𝐹𝑥) · (cos‘(𝑚 · 𝑥))) d𝑥 / π))
45129, 450eqtri 2756 . . . . . . . . . 10 𝐴 = (𝑚 ∈ ℕ0 ↦ (∫(-π(,)π)((𝐹𝑥) · (cos‘(𝑚 · 𝑥))) d𝑥 / π))
452 fourierdlem112.b . . . . . . . . . . 11 𝐵 = (𝑛 ∈ ℕ ↦ (∫(-π(,)π)((𝐹𝑥) · (sin‘(𝑛 · 𝑥))) d𝑥 / π))
453444fveq2d 6895 . . . . . . . . . . . . . . . 16 (𝑛 = 𝑚 → (sin‘(𝑛 · 𝑥)) = (sin‘(𝑚 · 𝑥)))
454453oveq2d 7430 . . . . . . . . . . . . . . 15 (𝑛 = 𝑚 → ((𝐹𝑥) · (sin‘(𝑛 · 𝑥))) = ((𝐹𝑥) · (sin‘(𝑚 · 𝑥))))
455454adantr 480 . . . . . . . . . . . . . 14 ((𝑛 = 𝑚𝑥 ∈ (-π(,)π)) → ((𝐹𝑥) · (sin‘(𝑛 · 𝑥))) = ((𝐹𝑥) · (sin‘(𝑚 · 𝑥))))
456455itgeq2dv 25704 . . . . . . . . . . . . 13 (𝑛 = 𝑚 → ∫(-π(,)π)((𝐹𝑥) · (sin‘(𝑛 · 𝑥))) d𝑥 = ∫(-π(,)π)((𝐹𝑥) · (sin‘(𝑚 · 𝑥))) d𝑥)
457456oveq1d 7429 . . . . . . . . . . . 12 (𝑛 = 𝑚 → (∫(-π(,)π)((𝐹𝑥) · (sin‘(𝑛 · 𝑥))) d𝑥 / π) = (∫(-π(,)π)((𝐹𝑥) · (sin‘(𝑚 · 𝑥))) d𝑥 / π))
458457cbvmptv 5255 . . . . . . . . . . 11 (𝑛 ∈ ℕ ↦ (∫(-π(,)π)((𝐹𝑥) · (sin‘(𝑛 · 𝑥))) d𝑥 / π)) = (𝑚 ∈ ℕ ↦ (∫(-π(,)π)((𝐹𝑥) · (sin‘(𝑚 · 𝑥))) d𝑥 / π))
459452, 458eqtri 2756 . . . . . . . . . 10 𝐵 = (𝑚 ∈ ℕ ↦ (∫(-π(,)π)((𝐹𝑥) · (sin‘(𝑚 · 𝑥))) d𝑥 / π))
460 fveq2 6891 . . . . . . . . . . . . . . . 16 (𝑛 = 𝑘 → (𝐴𝑛) = (𝐴𝑘))
461 oveq1 7421 . . . . . . . . . . . . . . . . 17 (𝑛 = 𝑘 → (𝑛 · 𝑋) = (𝑘 · 𝑋))
462461fveq2d 6895 . . . . . . . . . . . . . . . 16 (𝑛 = 𝑘 → (cos‘(𝑛 · 𝑋)) = (cos‘(𝑘 · 𝑋)))
463460, 462oveq12d 7432 . . . . . . . . . . . . . . 15 (𝑛 = 𝑘 → ((𝐴𝑛) · (cos‘(𝑛 · 𝑋))) = ((𝐴𝑘) · (cos‘(𝑘 · 𝑋))))
464 fveq2 6891 . . . . . . . . . . . . . . . 16 (𝑛 = 𝑘 → (𝐵𝑛) = (𝐵𝑘))
465461fveq2d 6895 . . . . . . . . . . . . . . . 16 (𝑛 = 𝑘 → (sin‘(𝑛 · 𝑋)) = (sin‘(𝑘 · 𝑋)))
466464, 465oveq12d 7432 . . . . . . . . . . . . . . 15 (𝑛 = 𝑘 → ((𝐵𝑛) · (sin‘(𝑛 · 𝑋))) = ((𝐵𝑘) · (sin‘(𝑘 · 𝑋))))
467463, 466oveq12d 7432 . . . . . . . . . . . . . 14 (𝑛 = 𝑘 → (((𝐴𝑛) · (cos‘(𝑛 · 𝑋))) + ((𝐵𝑛) · (sin‘(𝑛 · 𝑋)))) = (((𝐴𝑘) · (cos‘(𝑘 · 𝑋))) + ((𝐵𝑘) · (sin‘(𝑘 · 𝑋)))))
468467cbvsumv 15668 . . . . . . . . . . . . 13 Σ𝑛 ∈ (1...𝑚)(((𝐴𝑛) · (cos‘(𝑛 · 𝑋))) + ((𝐵𝑛) · (sin‘(𝑛 · 𝑋)))) = Σ𝑘 ∈ (1...𝑚)(((𝐴𝑘) · (cos‘(𝑘 · 𝑋))) + ((𝐵𝑘) · (sin‘(𝑘 · 𝑋))))
469468oveq2i 7425 . . . . . . . . . . . 12 (((𝐴‘0) / 2) + Σ𝑛 ∈ (1...𝑚)(((𝐴𝑛) · (cos‘(𝑛 · 𝑋))) + ((𝐵𝑛) · (sin‘(𝑛 · 𝑋))))) = (((𝐴‘0) / 2) + Σ𝑘 ∈ (1...𝑚)(((𝐴𝑘) · (cos‘(𝑘 · 𝑋))) + ((𝐵𝑘) · (sin‘(𝑘 · 𝑋)))))
470469mpteq2i 5247 . . . . . . . . . . 11 (𝑚 ∈ ℕ ↦ (((𝐴‘0) / 2) + Σ𝑛 ∈ (1...𝑚)(((𝐴𝑛) · (cos‘(𝑛 · 𝑋))) + ((𝐵𝑛) · (sin‘(𝑛 · 𝑋)))))) = (𝑚 ∈ ℕ ↦ (((𝐴‘0) / 2) + Σ𝑘 ∈ (1...𝑚)(((𝐴𝑘) · (cos‘(𝑘 · 𝑋))) + ((𝐵𝑘) · (sin‘(𝑘 · 𝑋))))))
471 oveq2 7422 . . . . . . . . . . . . . . 15 (𝑚 = 𝑛 → (1...𝑚) = (1...𝑛))
472471sumeq1d 15673 . . . . . . . . . . . . . 14 (𝑚 = 𝑛 → Σ𝑘 ∈ (1...𝑚)(((𝐴𝑘) · (cos‘(𝑘 · 𝑋))) + ((𝐵𝑘) · (sin‘(𝑘 · 𝑋)))) = Σ𝑘 ∈ (1...𝑛)(((𝐴𝑘) · (cos‘(𝑘 · 𝑋))) + ((𝐵𝑘) · (sin‘(𝑘 · 𝑋)))))
473472oveq2d 7430 . . . . . . . . . . . . 13 (𝑚 = 𝑛 → (((𝐴‘0) / 2) + Σ𝑘 ∈ (1...𝑚)(((𝐴𝑘) · (cos‘(𝑘 · 𝑋))) + ((𝐵𝑘) · (sin‘(𝑘 · 𝑋))))) = (((𝐴‘0) / 2) + Σ𝑘 ∈ (1...𝑛)(((𝐴𝑘) · (cos‘(𝑘 · 𝑋))) + ((𝐵𝑘) · (sin‘(𝑘 · 𝑋))))))
474473cbvmptv 5255 . . . . . . . . . . . 12 (𝑚 ∈ ℕ ↦ (((𝐴‘0) / 2) + Σ𝑘 ∈ (1...𝑚)(((𝐴𝑘) · (cos‘(𝑘 · 𝑋))) + ((𝐵𝑘) · (sin‘(𝑘 · 𝑋)))))) = (𝑛 ∈ ℕ ↦ (((𝐴‘0) / 2) + Σ𝑘 ∈ (1...𝑛)(((𝐴𝑘) · (cos‘(𝑘 · 𝑋))) + ((𝐵𝑘) · (sin‘(𝑘 · 𝑋))))))
475 fveq2 6891 . . . . . . . . . . . . . . . . 17 (𝑘 = 𝑚 → (𝐴𝑘) = (𝐴𝑚))
476 oveq1 7421 . . . . . . . . . . . . . . . . . 18 (𝑘 = 𝑚 → (𝑘 · 𝑋) = (𝑚 · 𝑋))
477476fveq2d 6895 . . . . . . . . . . . . . . . . 17 (𝑘 = 𝑚 → (cos‘(𝑘 · 𝑋)) = (cos‘(𝑚 · 𝑋)))
478475, 477oveq12d 7432 . . . . . . . . . . . . . . . 16 (𝑘 = 𝑚 → ((𝐴𝑘) · (cos‘(𝑘 · 𝑋))) = ((𝐴𝑚) · (cos‘(𝑚 · 𝑋))))
479 fveq2 6891 . . . . . . . . . . . . . . . . 17 (𝑘 = 𝑚 → (𝐵𝑘) = (𝐵𝑚))
480476fveq2d 6895 . . . . . . . . . . . . . . . . 17 (𝑘 = 𝑚 → (sin‘(𝑘 · 𝑋)) = (sin‘(𝑚 · 𝑋)))
481479, 480oveq12d 7432 . . . . . . . . . . . . . . . 16 (𝑘 = 𝑚 → ((𝐵𝑘) · (sin‘(𝑘 · 𝑋))) = ((𝐵𝑚) · (sin‘(𝑚 · 𝑋))))
482478, 481oveq12d 7432 . . . . . . . . . . . . . . 15 (𝑘 = 𝑚 → (((𝐴𝑘) · (cos‘(𝑘 · 𝑋))) + ((𝐵𝑘) · (sin‘(𝑘 · 𝑋)))) = (((𝐴𝑚) · (cos‘(𝑚 · 𝑋))) + ((𝐵𝑚) · (sin‘(𝑚 · 𝑋)))))
483482cbvsumv 15668 . . . . . . . . . . . . . 14 Σ𝑘 ∈ (1...𝑛)(((𝐴𝑘) · (cos‘(𝑘 · 𝑋))) + ((𝐵𝑘) · (sin‘(𝑘 · 𝑋)))) = Σ𝑚 ∈ (1...𝑛)(((𝐴𝑚) · (cos‘(𝑚 · 𝑋))) + ((𝐵𝑚) · (sin‘(𝑚 · 𝑋))))
484483oveq2i 7425 . . . . . . . . . . . . 13 (((𝐴‘0) / 2) + Σ𝑘 ∈ (1...𝑛)(((𝐴𝑘) · (cos‘(𝑘 · 𝑋))) + ((𝐵𝑘) · (sin‘(𝑘 · 𝑋))))) = (((𝐴‘0) / 2) + Σ𝑚 ∈ (1...𝑛)(((𝐴𝑚) · (cos‘(𝑚 · 𝑋))) + ((𝐵𝑚) · (sin‘(𝑚 · 𝑋)))))
485484mpteq2i 5247 . . . . . . . . . . . 12 (𝑛 ∈ ℕ ↦ (((𝐴‘0) / 2) + Σ𝑘 ∈ (1...𝑛)(((𝐴𝑘) · (cos‘(𝑘 · 𝑋))) + ((𝐵𝑘) · (sin‘(𝑘 · 𝑋)))))) = (𝑛 ∈ ℕ ↦ (((𝐴‘0) / 2) + Σ𝑚 ∈ (1...𝑛)(((𝐴𝑚) · (cos‘(𝑚 · 𝑋))) + ((𝐵𝑚) · (sin‘(𝑚 · 𝑋))))))
486474, 485eqtri 2756 . . . . . . . . . . 11 (𝑚 ∈ ℕ ↦ (((𝐴‘0) / 2) + Σ𝑘 ∈ (1...𝑚)(((𝐴𝑘) · (cos‘(𝑘 · 𝑋))) + ((𝐵𝑘) · (sin‘(𝑘 · 𝑋)))))) = (𝑛 ∈ ℕ ↦ (((𝐴‘0) / 2) + Σ𝑚 ∈ (1...𝑛)(((𝐴𝑚) · (cos‘(𝑚 · 𝑋))) + ((𝐵𝑚) · (sin‘(𝑚 · 𝑋))))))
48728, 470, 4863eqtri 2760 . . . . . . . . . 10 𝑍 = (𝑛 ∈ ℕ ↦ (((𝐴‘0) / 2) + Σ𝑚 ∈ (1...𝑛)(((𝐴𝑚) · (cos‘(𝑚 · 𝑋))) + ((𝐵𝑚) · (sin‘(𝑚 · 𝑋))))))
488 oveq2 7422 . . . . . . . . . . . . 13 (𝑦 = 𝑥 → (𝑋 + 𝑦) = (𝑋 + 𝑥))
489488fveq2d 6895 . . . . . . . . . . . 12 (𝑦 = 𝑥 → (𝐹‘(𝑋 + 𝑦)) = (𝐹‘(𝑋 + 𝑥)))
490 fveq2 6891 . . . . . . . . . . . 12 (𝑦 = 𝑥 → ((𝐷𝑚)‘𝑦) = ((𝐷𝑚)‘𝑥))
491489, 490oveq12d 7432 . . . . . . . . . . 11 (𝑦 = 𝑥 → ((𝐹‘(𝑋 + 𝑦)) · ((𝐷𝑚)‘𝑦)) = ((𝐹‘(𝑋 + 𝑥)) · ((𝐷𝑚)‘𝑥)))
492491cbvmptv 5255 . . . . . . . . . 10 (𝑦 ∈ ℝ ↦ ((𝐹‘(𝑋 + 𝑦)) · ((𝐷𝑚)‘𝑦))) = (𝑥 ∈ ℝ ↦ ((𝐹‘(𝑋 + 𝑥)) · ((𝐷𝑚)‘𝑥)))
493 eqid 2728 . . . . . . . . . 10 (𝑛 ∈ ℕ ↦ {𝑝 ∈ (ℝ ↑m (0...𝑛)) ∣ (((𝑝‘0) = (-π − 𝑋) ∧ (𝑝𝑛) = (π − 𝑋)) ∧ ∀𝑖 ∈ (0..^𝑛)(𝑝𝑖) < (𝑝‘(𝑖 + 1)))}) = (𝑛 ∈ ℕ ↦ {𝑝 ∈ (ℝ ↑m (0...𝑛)) ∣ (((𝑝‘0) = (-π − 𝑋) ∧ (𝑝𝑛) = (π − 𝑋)) ∧ ∀𝑖 ∈ (0..^𝑛)(𝑝𝑖) < (𝑝‘(𝑖 + 1)))})
494 fveq2 6891 . . . . . . . . . . . 12 (𝑗 = 𝑖 → (𝑄𝑗) = (𝑄𝑖))
495494oveq1d 7429 . . . . . . . . . . 11 (𝑗 = 𝑖 → ((𝑄𝑗) − 𝑋) = ((𝑄𝑖) − 𝑋))
496495cbvmptv 5255 . . . . . . . . . 10 (𝑗 ∈ (0...𝑀) ↦ ((𝑄𝑗) − 𝑋)) = (𝑖 ∈ (0...𝑀) ↦ ((𝑄𝑖) − 𝑋))
497451, 459, 487, 288, 51, 52, 53, 146, 43, 92, 492, 103, 222, 233, 48, 493, 496fourierdlem111 45599 . . . . . . . . 9 ((𝜑𝑚 ∈ ℕ) → (𝑍𝑚) = (∫(-π(,)0)((𝐹‘(𝑋 + 𝑠)) · ((𝐷𝑚)‘𝑠)) d𝑠 + ∫(0(,)π)((𝐹‘(𝑋 + 𝑠)) · ((𝐷𝑚)‘𝑠)) d𝑠))
498443, 497chvarvv 1995 . . . . . . . 8 ((𝜑𝑛 ∈ ℕ) → (𝑍𝑛) = (∫(-π(,)0)((𝐹‘(𝑋 + 𝑠)) · ((𝐷𝑛)‘𝑠)) d𝑠 + ∫(0(,)π)((𝐹‘(𝑋 + 𝑠)) · ((𝐷𝑛)‘𝑠)) d𝑠))
499411, 436oveq12d 7432 . . . . . . . 8 ((𝜑𝑛 ∈ ℕ) → (((𝑚 ∈ ℕ ↦ ∫(-π(,)0)((𝐹‘(𝑋 + 𝑠)) · ((𝐷𝑚)‘𝑠)) d𝑠)‘𝑛) + ((𝑚 ∈ ℕ ↦ ∫(0(,)π)((𝐹‘(𝑋 + 𝑠)) · ((𝐷𝑚)‘𝑠)) d𝑠)‘𝑛)) = (∫(-π(,)0)((𝐹‘(𝑋 + 𝑠)) · ((𝐷𝑛)‘𝑠)) d𝑠 + ∫(0(,)π)((𝐹‘(𝑋 + 𝑠)) · ((𝐷𝑛)‘𝑠)) d𝑠))
500498, 499eqtr4d 2771 . . . . . . 7 ((𝜑𝑛 ∈ ℕ) → (𝑍𝑛) = (((𝑚 ∈ ℕ ↦ ∫(-π(,)0)((𝐹‘(𝑋 + 𝑠)) · ((𝐷𝑚)‘𝑠)) d𝑠)‘𝑛) + ((𝑚 ∈ ℕ ↦ ∫(0(,)π)((𝐹‘(𝑋 + 𝑠)) · ((𝐷𝑚)‘𝑠)) d𝑠)‘𝑛)))
50116, 24, 27, 42, 14, 15, 333, 337, 359, 412, 437, 500climaddf 44997 . . . . . 6 (𝜑𝑍 ⇝ ((𝐿 / 2) + (𝑅 / 2)))
502 limccl 25797 . . . . . . . 8 ((𝐹 ↾ (-∞(,)𝑋)) lim 𝑋) ⊆ ℂ
503502, 285sselid 3976 . . . . . . 7 (𝜑𝐿 ∈ ℂ)
504 limccl 25797 . . . . . . . 8 ((𝐹 ↾ (𝑋(,)+∞)) lim 𝑋) ⊆ ℂ
505504, 284sselid 3976 . . . . . . 7 (𝜑𝑅 ∈ ℂ)
506 2cnd 12314 . . . . . . 7 (𝜑 → 2 ∈ ℂ)
507 2pos 12339 . . . . . . . . 9 0 < 2
508507a1i 11 . . . . . . . 8 (𝜑 → 0 < 2)
509508gt0ne0d 11802 . . . . . . 7 (𝜑 → 2 ≠ 0)
510503, 505, 506, 509divdird 12052 . . . . . 6 (𝜑 → ((𝐿 + 𝑅) / 2) = ((𝐿 / 2) + (𝑅 / 2)))
511501, 510breqtrrd 5170 . . . . 5 (𝜑𝑍 ⇝ ((𝐿 + 𝑅) / 2))
512 0nn0 12511 . . . . . . . 8 0 ∈ ℕ0
51343adantr 480 . . . . . . . . . 10 ((𝜑 ∧ 0 ∈ ℕ0) → 𝐹:ℝ⟶ℝ)
514 eqid 2728 . . . . . . . . . 10 (-π(,)π) = (-π(,)π)
515 ioossre 13411 . . . . . . . . . . . . . 14 (-π(,)π) ⊆ ℝ
516515a1i 11 . . . . . . . . . . . . 13 (𝜑 → (-π(,)π) ⊆ ℝ)
51743, 516feqresmpt 6962 . . . . . . . . . . . 12 (𝜑 → (𝐹 ↾ (-π(,)π)) = (𝑥 ∈ (-π(,)π) ↦ (𝐹𝑥)))
518 ioossicc 13436 . . . . . . . . . . . . . 14 (-π(,)π) ⊆ (-π[,]π)
519518a1i 11 . . . . . . . . . . . . 13 (𝜑 → (-π(,)π) ⊆ (-π[,]π))
520 ioombl 25487 . . . . . . . . . . . . . 14 (-π(,)π) ∈ dom vol
521520a1i 11 . . . . . . . . . . . . 13 (𝜑 → (-π(,)π) ∈ dom vol)
52243adantr 480 . . . . . . . . . . . . . 14 ((𝜑𝑥 ∈ (-π[,]π)) → 𝐹:ℝ⟶ℝ)
523385sselda 3978 . . . . . . . . . . . . . 14 ((𝜑𝑥 ∈ (-π[,]π)) → 𝑥 ∈ ℝ)
524522, 523ffvelcdmd 7089 . . . . . . . . . . . . 13 ((𝜑𝑥 ∈ (-π[,]π)) → (𝐹𝑥) ∈ ℝ)
52543, 385feqresmpt 6962 . . . . . . . . . . . . . 14 (𝜑 → (𝐹 ↾ (-π[,]π)) = (𝑥 ∈ (-π[,]π) ↦ (𝐹𝑥)))
526178a1i 11 . . . . . . . . . . . . . . . . 17 (𝜑 → ℝ ⊆ ℂ)
52743, 526fssd 6734 . . . . . . . . . . . . . . . 16 (𝜑𝐹:ℝ⟶ℂ)
528527, 385fssresd 6758 . . . . . . . . . . . . . . 15 (𝜑 → (𝐹 ↾ (-π[,]π)):(-π[,]π)⟶ℂ)
529 ioossicc 13436 . . . . . . . . . . . . . . . . . 18 ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))) ⊆ ((𝑄𝑖)[,](𝑄‘(𝑖 + 1)))
53061rexri 11296 . . . . . . . . . . . . . . . . . . . 20 -π ∈ ℝ*
531530a1i 11 . . . . . . . . . . . . . . . . . . 19 ((𝜑𝑖 ∈ (0..^𝑀)) → -π ∈ ℝ*)
53254rexri 11296 . . . . . . . . . . . . . . . . . . . 20 π ∈ ℝ*
533532a1i 11 . . . . . . . . . . . . . . . . . . 19 ((𝜑𝑖 ∈ (0..^𝑀)) → π ∈ ℝ*)
53451, 52, 53fourierdlem15 45504 . . . . . . . . . . . . . . . . . . . 20 (𝜑𝑄:(0...𝑀)⟶(-π[,]π))
535534adantr 480 . . . . . . . . . . . . . . . . . . 19 ((𝜑𝑖 ∈ (0..^𝑀)) → 𝑄:(0...𝑀)⟶(-π[,]π))
536 simpr 484 . . . . . . . . . . . . . . . . . . 19 ((𝜑𝑖 ∈ (0..^𝑀)) → 𝑖 ∈ (0..^𝑀))
537531, 533, 535, 536fourierdlem8 45497 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑖 ∈ (0..^𝑀)) → ((𝑄𝑖)[,](𝑄‘(𝑖 + 1))) ⊆ (-π[,]π))
538529, 537sstrid 3989 . . . . . . . . . . . . . . . . 17 ((𝜑𝑖 ∈ (0..^𝑀)) → ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))) ⊆ (-π[,]π))
539538resabs1d 6010 . . . . . . . . . . . . . . . 16 ((𝜑𝑖 ∈ (0..^𝑀)) → ((𝐹 ↾ (-π[,]π)) ↾ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))) = (𝐹 ↾ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))))
540539, 103eqeltrd 2829 . . . . . . . . . . . . . . 15 ((𝜑𝑖 ∈ (0..^𝑀)) → ((𝐹 ↾ (-π[,]π)) ↾ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))) ∈ (((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))–cn→ℂ))
541539eqcomd 2734 . . . . . . . . . . . . . . . . 17 ((𝜑𝑖 ∈ (0..^𝑀)) → (𝐹 ↾ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))) = ((𝐹 ↾ (-π[,]π)) ↾ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))))
542541oveq1d 7429 . . . . . . . . . . . . . . . 16 ((𝜑𝑖 ∈ (0..^𝑀)) → ((𝐹 ↾ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))) lim (𝑄𝑖)) = (((𝐹 ↾ (-π[,]π)) ↾ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))) lim (𝑄𝑖)))
543222, 542eleqtrd 2831 . . . . . . . . . . . . . . 15 ((𝜑𝑖 ∈ (0..^𝑀)) → 𝐶 ∈ (((𝐹 ↾ (-π[,]π)) ↾ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))) lim (𝑄𝑖)))
544541oveq1d 7429 . . . . . . . . . . . . . . . 16 ((𝜑𝑖 ∈ (0..^𝑀)) → ((𝐹 ↾ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))) lim (𝑄‘(𝑖 + 1))) = (((𝐹 ↾ (-π[,]π)) ↾ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))) lim (𝑄‘(𝑖 + 1))))
545233, 544eleqtrd 2831 . . . . . . . . . . . . . . 15 ((𝜑𝑖 ∈ (0..^𝑀)) → 𝑈 ∈ (((𝐹 ↾ (-π[,]π)) ↾ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))) lim (𝑄‘(𝑖 + 1))))
54651, 52, 53, 528, 540, 543, 545fourierdlem69 45557 . . . . . . . . . . . . . 14 (𝜑 → (𝐹 ↾ (-π[,]π)) ∈ 𝐿1)
547525, 546eqeltrrd 2830 . . . . . . . . . . . . 13 (𝜑 → (𝑥 ∈ (-π[,]π) ↦ (𝐹𝑥)) ∈ 𝐿1)
548519, 521, 524, 547iblss 25727 . . . . . . . . . . . 12 (𝜑 → (𝑥 ∈ (-π(,)π) ↦ (𝐹𝑥)) ∈ 𝐿1)
549517, 548eqeltrd 2829 . . . . . . . . . . 11 (𝜑 → (𝐹 ↾ (-π(,)π)) ∈ 𝐿1)
550549adantr 480 . . . . . . . . . 10 ((𝜑 ∧ 0 ∈ ℕ0) → (𝐹 ↾ (-π(,)π)) ∈ 𝐿1)
551 simpr 484 . . . . . . . . . 10 ((𝜑 ∧ 0 ∈ ℕ0) → 0 ∈ ℕ0)
552513, 514, 550, 29, 551fourierdlem16 45505 . . . . . . . . 9 ((𝜑 ∧ 0 ∈ ℕ0) → (((𝐴‘0) ∈ ℝ ∧ (𝑥 ∈ (-π(,)π) ↦ (𝐹𝑥)) ∈ 𝐿1) ∧ ∫(-π(,)π)((𝐹𝑥) · (cos‘(0 · 𝑥))) d𝑥 ∈ ℝ))
553552simplld 767 . . . . . . . 8 ((𝜑 ∧ 0 ∈ ℕ0) → (𝐴‘0) ∈ ℝ)
554512, 553mpan2 690 . . . . . . 7 (𝜑 → (𝐴‘0) ∈ ℝ)
555554rehalfcld 12483 . . . . . 6 (𝜑 → ((𝐴‘0) / 2) ∈ ℝ)
556555recnd 11266 . . . . 5 (𝜑 → ((𝐴‘0) / 2) ∈ ℂ)
557334mptex 7229 . . . . . 6 (𝑛 ∈ ℕ ↦ Σ𝑘 ∈ (1...𝑛)(((𝐴𝑘) · (cos‘(𝑘 · 𝑋))) + ((𝐵𝑘) · (sin‘(𝑘 · 𝑋))))) ∈ V
558557a1i 11 . . . . 5 (𝜑 → (𝑛 ∈ ℕ ↦ Σ𝑘 ∈ (1...𝑛)(((𝐴𝑘) · (cos‘(𝑘 · 𝑋))) + ((𝐵𝑘) · (sin‘(𝑘 · 𝑋))))) ∈ V)
559 simpr 484 . . . . . . . 8 ((𝜑𝑚 ∈ ℕ) → 𝑚 ∈ ℕ)
560555adantr 480 . . . . . . . . 9 ((𝜑𝑚 ∈ ℕ) → ((𝐴‘0) / 2) ∈ ℝ)
561 fzfid 13964 . . . . . . . . . 10 ((𝜑𝑚 ∈ ℕ) → (1...𝑚) ∈ Fin)
562 simpll 766 . . . . . . . . . . 11 (((𝜑𝑚 ∈ ℕ) ∧ 𝑛 ∈ (1...𝑚)) → 𝜑)
563 elfznn 13556 . . . . . . . . . . . 12 (𝑛 ∈ (1...𝑚) → 𝑛 ∈ ℕ)
564563adantl 481 . . . . . . . . . . 11 (((𝜑𝑚 ∈ ℕ) ∧ 𝑛 ∈ (1...𝑚)) → 𝑛 ∈ ℕ)
565 simpl 482 . . . . . . . . . . . . . 14 ((𝜑𝑛 ∈ ℕ) → 𝜑)
566362nnnn0d 12556 . . . . . . . . . . . . . 14 ((𝜑𝑛 ∈ ℕ) → 𝑛 ∈ ℕ0)
567 eleq1w 2812 . . . . . . . . . . . . . . . . 17 (𝑘 = 𝑛 → (𝑘 ∈ ℕ0𝑛 ∈ ℕ0))
568567anbi2d 629 . . . . . . . . . . . . . . . 16 (𝑘 = 𝑛 → ((𝜑𝑘 ∈ ℕ0) ↔ (𝜑𝑛 ∈ ℕ0)))
569 fveq2 6891 . . . . . . . . . . . . . . . . 17 (𝑘 = 𝑛 → (𝐴𝑘) = (𝐴𝑛))
570569eleq1d 2814 . . . . . . . . . . . . . . . 16 (𝑘 = 𝑛 → ((𝐴𝑘) ∈ ℝ ↔ (𝐴𝑛) ∈ ℝ))
571568, 570imbi12d 344 . . . . . . . . . . . . . . 15 (𝑘 = 𝑛 → (((𝜑𝑘 ∈ ℕ0) → (𝐴𝑘) ∈ ℝ) ↔ ((𝜑𝑛 ∈ ℕ0) → (𝐴𝑛) ∈ ℝ)))
57243adantr 480 . . . . . . . . . . . . . . . . 17 ((𝜑𝑘 ∈ ℕ0) → 𝐹:ℝ⟶ℝ)
573549adantr 480 . . . . . . . . . . . . . . . . 17 ((𝜑𝑘 ∈ ℕ0) → (𝐹 ↾ (-π(,)π)) ∈ 𝐿1)
574 simpr 484 . . . . . . . . . . . . . . . . 17 ((𝜑𝑘 ∈ ℕ0) → 𝑘 ∈ ℕ0)
575572, 514, 573, 29, 574fourierdlem16 45505 . . . . . . . . . . . . . . . 16 ((𝜑𝑘 ∈ ℕ0) → (((𝐴𝑘) ∈ ℝ ∧ (𝑥 ∈ (-π(,)π) ↦ (𝐹𝑥)) ∈ 𝐿1) ∧ ∫(-π(,)π)((𝐹𝑥) · (cos‘(𝑘 · 𝑥))) d𝑥 ∈ ℝ))
576575simplld 767 . . . . . . . . . . . . . . 15 ((𝜑𝑘 ∈ ℕ0) → (𝐴𝑘) ∈ ℝ)
577571, 576chvarvv 1995 . . . . . . . . . . . . . 14 ((𝜑𝑛 ∈ ℕ0) → (𝐴𝑛) ∈ ℝ)
578565, 566, 577syl2anc 583 . . . . . . . . . . . . 13 ((𝜑𝑛 ∈ ℕ) → (𝐴𝑛) ∈ ℝ)
579362nnred 12251 . . . . . . . . . . . . . . 15 ((𝜑𝑛 ∈ ℕ) → 𝑛 ∈ ℝ)
580579, 399remulcld 11268 . . . . . . . . . . . . . 14 ((𝜑𝑛 ∈ ℕ) → (𝑛 · 𝑋) ∈ ℝ)
581580recoscld 16114 . . . . . . . . . . . . 13 ((𝜑𝑛 ∈ ℕ) → (cos‘(𝑛 · 𝑋)) ∈ ℝ)
582578, 581remulcld 11268 . . . . . . . . . . . 12 ((𝜑𝑛 ∈ ℕ) → ((𝐴𝑛) · (cos‘(𝑛 · 𝑋))) ∈ ℝ)
583 eleq1w 2812 . . . . . . . . . . . . . . . 16 (𝑘 = 𝑛 → (𝑘 ∈ ℕ ↔ 𝑛 ∈ ℕ))
584583anbi2d 629 . . . . . . . . . . . . . . 15 (𝑘 = 𝑛 → ((𝜑𝑘 ∈ ℕ) ↔ (𝜑𝑛 ∈ ℕ)))
585 fveq2 6891 . . . . . . . . . . . . . . . 16 (𝑘 = 𝑛 → (𝐵𝑘) = (𝐵𝑛))
586585eleq1d 2814 . . . . . . . . . . . . . . 15 (𝑘 = 𝑛 → ((𝐵𝑘) ∈ ℝ ↔ (𝐵𝑛) ∈ ℝ))
587584, 586imbi12d 344 . . . . . . . . . . . . . 14 (𝑘 = 𝑛 → (((𝜑𝑘 ∈ ℕ) → (𝐵𝑘) ∈ ℝ) ↔ ((𝜑𝑛 ∈ ℕ) → (𝐵𝑛) ∈ ℝ)))
58843adantr 480 . . . . . . . . . . . . . . . 16 ((𝜑𝑘 ∈ ℕ) → 𝐹:ℝ⟶ℝ)
589549adantr 480 . . . . . . . . . . . . . . . 16 ((𝜑𝑘 ∈ ℕ) → (𝐹 ↾ (-π(,)π)) ∈ 𝐿1)
590 simpr 484 . . . . . . . . . . . . . . . 16 ((𝜑𝑘 ∈ ℕ) → 𝑘 ∈ ℕ)
591588, 514, 589, 452, 590fourierdlem21 45510 . . . . . . . . . . . . . . 15 ((𝜑𝑘 ∈ ℕ) → (((𝐵𝑘) ∈ ℝ ∧ (𝑥 ∈ (-π(,)π) ↦ ((𝐹𝑥) · (sin‘(𝑘 · 𝑥)))) ∈ 𝐿1) ∧ ∫(-π(,)π)((𝐹𝑥) · (sin‘(𝑘 · 𝑥))) d𝑥 ∈ ℝ))
592591simplld 767 . . . . . . . . . . . . . 14 ((𝜑𝑘 ∈ ℕ) → (𝐵𝑘) ∈ ℝ)
593587, 592chvarvv 1995 . . . . . . . . . . . . 13 ((𝜑𝑛 ∈ ℕ) → (𝐵𝑛) ∈ ℝ)
594580resincld 16113 . . . . . . . . . . . . 13 ((𝜑𝑛 ∈ ℕ) → (sin‘(𝑛 · 𝑋)) ∈ ℝ)
595593, 594remulcld 11268 . . . . . . . . . . . 12 ((𝜑𝑛 ∈ ℕ) → ((𝐵𝑛) · (sin‘(𝑛 · 𝑋))) ∈ ℝ)
596582, 595readdcld 11267 . . . . . . . . . . 11 ((𝜑𝑛 ∈ ℕ) → (((𝐴𝑛) · (cos‘(𝑛 · 𝑋))) + ((𝐵𝑛) · (sin‘(𝑛 · 𝑋)))) ∈ ℝ)
597562, 564, 596syl2anc 583 . . . . . . . . . 10 (((𝜑𝑚 ∈ ℕ) ∧ 𝑛 ∈ (1...𝑚)) → (((𝐴𝑛) · (cos‘(𝑛 · 𝑋))) + ((𝐵𝑛) · (sin‘(𝑛 · 𝑋)))) ∈ ℝ)
598561, 597fsumrecl 15706 . . . . . . . . 9 ((𝜑𝑚 ∈ ℕ) → Σ𝑛 ∈ (1...𝑚)(((𝐴𝑛) · (cos‘(𝑛 · 𝑋))) + ((𝐵𝑛) · (sin‘(𝑛 · 𝑋)))) ∈ ℝ)
599560, 598readdcld 11267 . . . . . . . 8 ((𝜑𝑚 ∈ ℕ) → (((𝐴‘0) / 2) + Σ𝑛 ∈ (1...𝑚)(((𝐴𝑛) · (cos‘(𝑛 · 𝑋))) + ((𝐵𝑛) · (sin‘(𝑛 · 𝑋))))) ∈ ℝ)
60028fvmpt2 7010 . . . . . . . 8 ((𝑚 ∈ ℕ ∧ (((𝐴‘0) / 2) + Σ𝑛 ∈ (1...𝑚)(((𝐴𝑛) · (cos‘(𝑛 · 𝑋))) + ((𝐵𝑛) · (sin‘(𝑛 · 𝑋))))) ∈ ℝ) → (𝑍𝑚) = (((𝐴‘0) / 2) + Σ𝑛 ∈ (1...𝑚)(((𝐴𝑛) · (cos‘(𝑛 · 𝑋))) + ((𝐵𝑛) · (sin‘(𝑛 · 𝑋))))))
601559, 599, 600syl2anc 583 . . . . . . 7 ((𝜑𝑚 ∈ ℕ) → (𝑍𝑚) = (((𝐴‘0) / 2) + Σ𝑛 ∈ (1...𝑚)(((𝐴𝑛) · (cos‘(𝑛 · 𝑋))) + ((𝐵𝑛) · (sin‘(𝑛 · 𝑋))))))
602601, 599eqeltrd 2829 . . . . . 6 ((𝜑𝑚 ∈ ℕ) → (𝑍𝑚) ∈ ℝ)
603602recnd 11266 . . . . 5 ((𝜑𝑚 ∈ ℕ) → (𝑍𝑚) ∈ ℂ)
604 eqidd 2729 . . . . . . 7 ((𝜑𝑚 ∈ ℕ) → (𝑛 ∈ ℕ ↦ Σ𝑘 ∈ (1...𝑛)(((𝐴𝑘) · (cos‘(𝑘 · 𝑋))) + ((𝐵𝑘) · (sin‘(𝑘 · 𝑋))))) = (𝑛 ∈ ℕ ↦ Σ𝑘 ∈ (1...𝑛)(((𝐴𝑘) · (cos‘(𝑘 · 𝑋))) + ((𝐵𝑘) · (sin‘(𝑘 · 𝑋))))))
605 oveq2 7422 . . . . . . . . 9 (𝑛 = 𝑚 → (1...𝑛) = (1...𝑚))
606605sumeq1d 15673 . . . . . . . 8 (𝑛 = 𝑚 → Σ𝑘 ∈ (1...𝑛)(((𝐴𝑘) · (cos‘(𝑘 · 𝑋))) + ((𝐵𝑘) · (sin‘(𝑘 · 𝑋)))) = Σ𝑘 ∈ (1...𝑚)(((𝐴𝑘) · (cos‘(𝑘 · 𝑋))) + ((𝐵𝑘) · (sin‘(𝑘 · 𝑋)))))
607606adantl 481 . . . . . . 7 (((𝜑𝑚 ∈ ℕ) ∧ 𝑛 = 𝑚) → Σ𝑘 ∈ (1...𝑛)(((𝐴𝑘) · (cos‘(𝑘 · 𝑋))) + ((𝐵𝑘) · (sin‘(𝑘 · 𝑋)))) = Σ𝑘 ∈ (1...𝑚)(((𝐴𝑘) · (cos‘(𝑘 · 𝑋))) + ((𝐵𝑘) · (sin‘(𝑘 · 𝑋)))))
608 sumex 15660 . . . . . . . 8 Σ𝑘 ∈ (1...𝑚)(((𝐴𝑘) · (cos‘(𝑘 · 𝑋))) + ((𝐵𝑘) · (sin‘(𝑘 · 𝑋)))) ∈ V
609608a1i 11 . . . . . . 7 ((𝜑𝑚 ∈ ℕ) → Σ𝑘 ∈ (1...𝑚)(((𝐴𝑘) · (cos‘(𝑘 · 𝑋))) + ((𝐵𝑘) · (sin‘(𝑘 · 𝑋)))) ∈ V)
610604, 607, 559, 609fvmptd 7006 . . . . . 6 ((𝜑𝑚 ∈ ℕ) → ((𝑛 ∈ ℕ ↦ Σ𝑘 ∈ (1...𝑛)(((𝐴𝑘) · (cos‘(𝑘 · 𝑋))) + ((𝐵𝑘) · (sin‘(𝑘 · 𝑋)))))‘𝑚) = Σ𝑘 ∈ (1...𝑚)(((𝐴𝑘) · (cos‘(𝑘 · 𝑋))) + ((𝐵𝑘) · (sin‘(𝑘 · 𝑋)))))
611560recnd 11266 . . . . . . . 8 ((𝜑𝑚 ∈ ℕ) → ((𝐴‘0) / 2) ∈ ℂ)
612598recnd 11266 . . . . . . . 8 ((𝜑𝑚 ∈ ℕ) → Σ𝑛 ∈ (1...𝑚)(((𝐴𝑛) · (cos‘(𝑛 · 𝑋))) + ((𝐵𝑛) · (sin‘(𝑛 · 𝑋)))) ∈ ℂ)
613611, 612pncan2d 11597 . . . . . . 7 ((𝜑𝑚 ∈ ℕ) → ((((𝐴‘0) / 2) + Σ𝑛 ∈ (1...𝑚)(((𝐴𝑛) · (cos‘(𝑛 · 𝑋))) + ((𝐵𝑛) · (sin‘(𝑛 · 𝑋))))) − ((𝐴‘0) / 2)) = Σ𝑛 ∈ (1...𝑚)(((𝐴𝑛) · (cos‘(𝑛 · 𝑋))) + ((𝐵𝑛) · (sin‘(𝑛 · 𝑋)))))
614613, 468eqtr2di 2785 . . . . . 6 ((𝜑𝑚 ∈ ℕ) → Σ𝑘 ∈ (1...𝑚)(((𝐴𝑘) · (cos‘(𝑘 · 𝑋))) + ((𝐵𝑘) · (sin‘(𝑘 · 𝑋)))) = ((((𝐴‘0) / 2) + Σ𝑛 ∈ (1...𝑚)(((𝐴𝑛) · (cos‘(𝑛 · 𝑋))) + ((𝐵𝑛) · (sin‘(𝑛 · 𝑋))))) − ((𝐴‘0) / 2)))
615 ovex 7447 . . . . . . . . 9 (((𝐴‘0) / 2) + Σ𝑛 ∈ (1...𝑚)(((𝐴𝑛) · (cos‘(𝑛 · 𝑋))) + ((𝐵𝑛) · (sin‘(𝑛 · 𝑋))))) ∈ V
61628fvmpt2 7010 . . . . . . . . 9 ((𝑚 ∈ ℕ ∧ (((𝐴‘0) / 2) + Σ𝑛 ∈ (1...𝑚)(((𝐴𝑛) · (cos‘(𝑛 · 𝑋))) + ((𝐵𝑛) · (sin‘(𝑛 · 𝑋))))) ∈ V) → (𝑍𝑚) = (((𝐴‘0) / 2) + Σ𝑛 ∈ (1...𝑚)(((𝐴𝑛) · (cos‘(𝑛 · 𝑋))) + ((𝐵𝑛) · (sin‘(𝑛 · 𝑋))))))
617559, 615, 616sylancl 585 . . . . . . . 8 ((𝜑𝑚 ∈ ℕ) → (𝑍𝑚) = (((𝐴‘0) / 2) + Σ𝑛 ∈ (1...𝑚)(((𝐴𝑛) · (cos‘(𝑛 · 𝑋))) + ((𝐵𝑛) · (sin‘(𝑛 · 𝑋))))))
618617eqcomd 2734 . . . . . . 7 ((𝜑𝑚 ∈ ℕ) → (((𝐴‘0) / 2) + Σ𝑛 ∈ (1...𝑚)(((𝐴𝑛) · (cos‘(𝑛 · 𝑋))) + ((𝐵𝑛) · (sin‘(𝑛 · 𝑋))))) = (𝑍𝑚))
619618oveq1d 7429 . . . . . 6 ((𝜑𝑚 ∈ ℕ) → ((((𝐴‘0) / 2) + Σ𝑛 ∈ (1...𝑚)(((𝐴𝑛) · (cos‘(𝑛 · 𝑋))) + ((𝐵𝑛) · (sin‘(𝑛 · 𝑋))))) − ((𝐴‘0) / 2)) = ((𝑍𝑚) − ((𝐴‘0) / 2)))
620610, 614, 6193eqtrd 2772 . . . . 5 ((𝜑𝑚 ∈ ℕ) → ((𝑛 ∈ ℕ ↦ Σ𝑘 ∈ (1...𝑛)(((𝐴𝑘) · (cos‘(𝑘 · 𝑋))) + ((𝐵𝑘) · (sin‘(𝑘 · 𝑋)))))‘𝑚) = ((𝑍𝑚) − ((𝐴‘0) / 2)))
62114, 15, 511, 556, 558, 603, 620climsubc1 15608 . . . 4 (𝜑 → (𝑛 ∈ ℕ ↦ Σ𝑘 ∈ (1...𝑛)(((𝐴𝑘) · (cos‘(𝑘 · 𝑋))) + ((𝐵𝑘) · (sin‘(𝑘 · 𝑋))))) ⇝ (((𝐿 + 𝑅) / 2) − ((𝐴‘0) / 2)))
622 seqex 13994 . . . . . 6 seq1( + , (𝑗 ∈ ℕ ↦ (((𝐴𝑗) · (cos‘(𝑗 · 𝑋))) + ((𝐵𝑗) · (sin‘(𝑗 · 𝑋)))))) ∈ V
623622a1i 11 . . . . 5 (𝜑 → seq1( + , (𝑗 ∈ ℕ ↦ (((𝐴𝑗) · (cos‘(𝑗 · 𝑋))) + ((𝐵𝑗) · (sin‘(𝑗 · 𝑋)))))) ∈ V)
624 eqidd 2729 . . . . . . 7 ((𝜑𝑙 ∈ ℕ) → (𝑛 ∈ ℕ ↦ Σ𝑘 ∈ (1...𝑛)(((𝐴𝑘) · (cos‘(𝑘 · 𝑋))) + ((𝐵𝑘) · (sin‘(𝑘 · 𝑋))))) = (𝑛 ∈ ℕ ↦ Σ𝑘 ∈ (1...𝑛)(((𝐴𝑘) · (cos‘(𝑘 · 𝑋))) + ((𝐵𝑘) · (sin‘(𝑘 · 𝑋))))))
625 oveq2 7422 . . . . . . . . 9 (𝑛 = 𝑙 → (1...𝑛) = (1...𝑙))
626625sumeq1d 15673 . . . . . . . 8 (𝑛 = 𝑙 → Σ𝑘 ∈ (1...𝑛)(((𝐴𝑘) · (cos‘(𝑘 · 𝑋))) + ((𝐵𝑘) · (sin‘(𝑘 · 𝑋)))) = Σ𝑘 ∈ (1...𝑙)(((𝐴𝑘) · (cos‘(𝑘 · 𝑋))) + ((𝐵𝑘) · (sin‘(𝑘 · 𝑋)))))
627626adantl 481 . . . . . . 7 (((𝜑𝑙 ∈ ℕ) ∧ 𝑛 = 𝑙) → Σ𝑘 ∈ (1...𝑛)(((𝐴𝑘) · (cos‘(𝑘 · 𝑋))) + ((𝐵𝑘) · (sin‘(𝑘 · 𝑋)))) = Σ𝑘 ∈ (1...𝑙)(((𝐴𝑘) · (cos‘(𝑘 · 𝑋))) + ((𝐵𝑘) · (sin‘(𝑘 · 𝑋)))))
628 simpr 484 . . . . . . 7 ((𝜑𝑙 ∈ ℕ) → 𝑙 ∈ ℕ)
629 fzfid 13964 . . . . . . . 8 ((𝜑𝑙 ∈ ℕ) → (1...𝑙) ∈ Fin)
630 elfznn 13556 . . . . . . . . . . . . 13 (𝑘 ∈ (1...𝑙) → 𝑘 ∈ ℕ)
631630nnnn0d 12556 . . . . . . . . . . . 12 (𝑘 ∈ (1...𝑙) → 𝑘 ∈ ℕ0)
632631, 576sylan2 592 . . . . . . . . . . 11 ((𝜑𝑘 ∈ (1...𝑙)) → (𝐴𝑘) ∈ ℝ)
633630nnred 12251 . . . . . . . . . . . . . 14 (𝑘 ∈ (1...𝑙) → 𝑘 ∈ ℝ)
634633adantl 481 . . . . . . . . . . . . 13 ((𝜑𝑘 ∈ (1...𝑙)) → 𝑘 ∈ ℝ)
635146adantr 480 . . . . . . . . . . . . 13 ((𝜑𝑘 ∈ (1...𝑙)) → 𝑋 ∈ ℝ)
636634, 635remulcld 11268 . . . . . . . . . . . 12 ((𝜑𝑘 ∈ (1...𝑙)) → (𝑘 · 𝑋) ∈ ℝ)
637636recoscld 16114 . . . . . . . . . . 11 ((𝜑𝑘 ∈ (1...𝑙)) → (cos‘(𝑘 · 𝑋)) ∈ ℝ)
638632, 637remulcld 11268 . . . . . . . . . 10 ((𝜑𝑘 ∈ (1...𝑙)) → ((𝐴𝑘) · (cos‘(𝑘 · 𝑋))) ∈ ℝ)
639630, 592sylan2 592 . . . . . . . . . . 11 ((𝜑𝑘 ∈ (1...𝑙)) → (𝐵𝑘) ∈ ℝ)
640636resincld 16113 . . . . . . . . . . 11 ((𝜑𝑘 ∈ (1...𝑙)) → (sin‘(𝑘 · 𝑋)) ∈ ℝ)
641639, 640remulcld 11268 . . . . . . . . . 10 ((𝜑𝑘 ∈ (1...𝑙)) → ((𝐵𝑘) · (sin‘(𝑘 · 𝑋))) ∈ ℝ)
642638, 641readdcld 11267 . . . . . . . . 9 ((𝜑𝑘 ∈ (1...𝑙)) → (((𝐴𝑘) · (cos‘(𝑘 · 𝑋))) + ((𝐵𝑘) · (sin‘(𝑘 · 𝑋)))) ∈ ℝ)
643642adantlr 714 . . . . . . . 8 (((𝜑𝑙 ∈ ℕ) ∧ 𝑘 ∈ (1...𝑙)) → (((𝐴𝑘) · (cos‘(𝑘 · 𝑋))) + ((𝐵𝑘) · (sin‘(𝑘 · 𝑋)))) ∈ ℝ)
644629, 643fsumrecl 15706 . . . . . . 7 ((𝜑𝑙 ∈ ℕ) → Σ𝑘 ∈ (1...𝑙)(((𝐴𝑘) · (cos‘(𝑘 · 𝑋))) + ((𝐵𝑘) · (sin‘(𝑘 · 𝑋)))) ∈ ℝ)
645624, 627, 628, 644fvmptd 7006 . . . . . 6 ((𝜑𝑙 ∈ ℕ) → ((𝑛 ∈ ℕ ↦ Σ𝑘 ∈ (1...𝑛)(((𝐴𝑘) · (cos‘(𝑘 · 𝑋))) + ((𝐵𝑘) · (sin‘(𝑘 · 𝑋)))))‘𝑙) = Σ𝑘 ∈ (1...𝑙)(((𝐴𝑘) · (cos‘(𝑘 · 𝑋))) + ((𝐵𝑘) · (sin‘(𝑘 · 𝑋)))))
646 eleq1w 2812 . . . . . . . . 9 (𝑛 = 𝑙 → (𝑛 ∈ ℕ ↔ 𝑙 ∈ ℕ))
647646anbi2d 629 . . . . . . . 8 (𝑛 = 𝑙 → ((𝜑𝑛 ∈ ℕ) ↔ (𝜑𝑙 ∈ ℕ)))
648 fveq2 6891 . . . . . . . . 9 (𝑛 = 𝑙 → (seq1( + , (𝑗 ∈ ℕ ↦ (((𝐴𝑗) · (cos‘(𝑗 · 𝑋))) + ((𝐵𝑗) · (sin‘(𝑗 · 𝑋))))))‘𝑛) = (seq1( + , (𝑗 ∈ ℕ ↦ (((𝐴𝑗) · (cos‘(𝑗 · 𝑋))) + ((𝐵𝑗) · (sin‘(𝑗 · 𝑋))))))‘𝑙))
649626, 648eqeq12d 2744 . . . . . . . 8 (𝑛 = 𝑙 → (Σ𝑘 ∈ (1...𝑛)(((𝐴𝑘) · (cos‘(𝑘 · 𝑋))) + ((𝐵𝑘) · (sin‘(𝑘 · 𝑋)))) = (seq1( + , (𝑗 ∈ ℕ ↦ (((𝐴𝑗) · (cos‘(𝑗 · 𝑋))) + ((𝐵𝑗) · (sin‘(𝑗 · 𝑋))))))‘𝑛) ↔ Σ𝑘 ∈ (1...𝑙)(((𝐴𝑘) · (cos‘(𝑘 · 𝑋))) + ((𝐵𝑘) · (sin‘(𝑘 · 𝑋)))) = (seq1( + , (𝑗 ∈ ℕ ↦ (((𝐴𝑗) · (cos‘(𝑗 · 𝑋))) + ((𝐵𝑗) · (sin‘(𝑗 · 𝑋))))))‘𝑙)))
650647, 649imbi12d 344 . . . . . . 7 (𝑛 = 𝑙 → (((𝜑𝑛 ∈ ℕ) → Σ𝑘 ∈ (1...𝑛)(((𝐴𝑘) · (cos‘(𝑘 · 𝑋))) + ((𝐵𝑘) · (sin‘(𝑘 · 𝑋)))) = (seq1( + , (𝑗 ∈ ℕ ↦ (((𝐴𝑗) · (cos‘(𝑗 · 𝑋))) + ((𝐵𝑗) · (sin‘(𝑗 · 𝑋))))))‘𝑛)) ↔ ((𝜑𝑙 ∈ ℕ) → Σ𝑘 ∈ (1...𝑙)(((𝐴𝑘) · (cos‘(𝑘 · 𝑋))) + ((𝐵𝑘) · (sin‘(𝑘 · 𝑋)))) = (seq1( + , (𝑗 ∈ ℕ ↦ (((𝐴𝑗) · (cos‘(𝑗 · 𝑋))) + ((𝐵𝑗) · (sin‘(𝑗 · 𝑋))))))‘𝑙))))
651 eqidd 2729 . . . . . . . . 9 (((𝜑𝑛 ∈ ℕ) ∧ 𝑘 ∈ (1...𝑛)) → (𝑗 ∈ ℕ ↦ (((𝐴𝑗) · (cos‘(𝑗 · 𝑋))) + ((𝐵𝑗) · (sin‘(𝑗 · 𝑋))))) = (𝑗 ∈ ℕ ↦ (((𝐴𝑗) · (cos‘(𝑗 · 𝑋))) + ((𝐵𝑗) · (sin‘(𝑗 · 𝑋))))))
652 fveq2 6891 . . . . . . . . . . . 12 (𝑗 = 𝑘 → (𝐴𝑗) = (𝐴𝑘))
653 oveq1 7421 . . . . . . . . . . . . 13 (𝑗 = 𝑘 → (𝑗 · 𝑋) = (𝑘 · 𝑋))
654653fveq2d 6895 . . . . . . . . . . . 12 (𝑗 = 𝑘 → (cos‘(𝑗 · 𝑋)) = (cos‘(𝑘 · 𝑋)))
655652, 654oveq12d 7432 . . . . . . . . . . 11 (𝑗 = 𝑘 → ((𝐴𝑗) · (cos‘(𝑗 · 𝑋))) = ((𝐴𝑘) · (cos‘(𝑘 · 𝑋))))
656 fveq2 6891 . . . . . . . . . . . 12 (𝑗 = 𝑘 → (𝐵𝑗) = (𝐵𝑘))
657653fveq2d 6895 . . . . . . . . . . . 12 (𝑗 = 𝑘 → (sin‘(𝑗 · 𝑋)) = (sin‘(𝑘 · 𝑋)))
658656, 657oveq12d 7432 . . . . . . . . . . 11 (𝑗 = 𝑘 → ((𝐵𝑗) · (sin‘(𝑗 · 𝑋))) = ((𝐵𝑘) · (sin‘(𝑘 · 𝑋))))
659655, 658oveq12d 7432 . . . . . . . . . 10 (𝑗 = 𝑘 → (((𝐴𝑗) · (cos‘(𝑗 · 𝑋))) + ((𝐵𝑗) · (sin‘(𝑗 · 𝑋)))) = (((𝐴𝑘) · (cos‘(𝑘 · 𝑋))) + ((𝐵𝑘) · (sin‘(𝑘 · 𝑋)))))
660659adantl 481 . . . . . . . . 9 ((((𝜑𝑛 ∈ ℕ) ∧ 𝑘 ∈ (1...𝑛)) ∧ 𝑗 = 𝑘) → (((𝐴𝑗) · (cos‘(𝑗 · 𝑋))) + ((𝐵𝑗) · (sin‘(𝑗 · 𝑋)))) = (((𝐴𝑘) · (cos‘(𝑘 · 𝑋))) + ((𝐵𝑘) · (sin‘(𝑘 · 𝑋)))))
661 elfznn 13556 . . . . . . . . . 10 (𝑘 ∈ (1...𝑛) → 𝑘 ∈ ℕ)
662661adantl 481 . . . . . . . . 9 (((𝜑𝑛 ∈ ℕ) ∧ 𝑘 ∈ (1...𝑛)) → 𝑘 ∈ ℕ)
663 simpll 766 . . . . . . . . . 10 (((𝜑𝑛 ∈ ℕ) ∧ 𝑘 ∈ (1...𝑛)) → 𝜑)
664 nnnn0 12503 . . . . . . . . . . . 12 (𝑘 ∈ ℕ → 𝑘 ∈ ℕ0)
665 nn0re 12505 . . . . . . . . . . . . . . . 16 (𝑘 ∈ ℕ0𝑘 ∈ ℝ)
666665adantl 481 . . . . . . . . . . . . . . 15 ((𝜑𝑘 ∈ ℕ0) → 𝑘 ∈ ℝ)
667146adantr 480 . . . . . . . . . . . . . . 15 ((𝜑𝑘 ∈ ℕ0) → 𝑋 ∈ ℝ)
668666, 667remulcld 11268 . . . . . . . . . . . . . 14 ((𝜑𝑘 ∈ ℕ0) → (𝑘 · 𝑋) ∈ ℝ)
669668recoscld 16114 . . . . . . . . . . . . 13 ((𝜑𝑘 ∈ ℕ0) → (cos‘(𝑘 · 𝑋)) ∈ ℝ)
670576, 669remulcld 11268 . . . . . . . . . . . 12 ((𝜑𝑘 ∈ ℕ0) → ((𝐴𝑘) · (cos‘(𝑘 · 𝑋))) ∈ ℝ)
671664, 670sylan2 592 . . . . . . . . . . 11 ((𝜑𝑘 ∈ ℕ) → ((𝐴𝑘) · (cos‘(𝑘 · 𝑋))) ∈ ℝ)
672664, 668sylan2 592 . . . . . . . . . . . . 13 ((𝜑𝑘 ∈ ℕ) → (𝑘 · 𝑋) ∈ ℝ)
673672resincld 16113 . . . . . . . . . . . 12 ((𝜑𝑘 ∈ ℕ) → (sin‘(𝑘 · 𝑋)) ∈ ℝ)
674592, 673remulcld 11268 . . . . . . . . . . 11 ((𝜑𝑘 ∈ ℕ) → ((𝐵𝑘) · (sin‘(𝑘 · 𝑋))) ∈ ℝ)
675671, 674readdcld 11267 . . . . . . . . . 10 ((𝜑𝑘 ∈ ℕ) → (((𝐴𝑘) · (cos‘(𝑘 · 𝑋))) + ((𝐵𝑘) · (sin‘(𝑘 · 𝑋)))) ∈ ℝ)
676663, 662, 675syl2anc 583 . . . . . . . . 9 (((𝜑𝑛 ∈ ℕ) ∧ 𝑘 ∈ (1...𝑛)) → (((𝐴𝑘) · (cos‘(𝑘 · 𝑋))) + ((𝐵𝑘) · (sin‘(𝑘 · 𝑋)))) ∈ ℝ)
677651, 660, 662, 676fvmptd 7006 . . . . . . . 8 (((𝜑𝑛 ∈ ℕ) ∧ 𝑘 ∈ (1...𝑛)) → ((𝑗 ∈ ℕ ↦ (((𝐴𝑗) · (cos‘(𝑗 · 𝑋))) + ((𝐵𝑗) · (sin‘(𝑗 · 𝑋)))))‘𝑘) = (((𝐴𝑘) · (cos‘(𝑘 · 𝑋))) + ((𝐵𝑘) · (sin‘(𝑘 · 𝑋)))))
678362, 14eleqtrdi 2839 . . . . . . . 8 ((𝜑𝑛 ∈ ℕ) → 𝑛 ∈ (ℤ‘1))
679676recnd 11266 . . . . . . . 8 (((𝜑𝑛 ∈ ℕ) ∧ 𝑘 ∈ (1...𝑛)) → (((𝐴𝑘) · (cos‘(𝑘 · 𝑋))) + ((𝐵𝑘) · (sin‘(𝑘 · 𝑋)))) ∈ ℂ)
680677, 678, 679fsumser 15702 . . . . . . 7 ((𝜑𝑛 ∈ ℕ) → Σ𝑘 ∈ (1...𝑛)(((𝐴𝑘) · (cos‘(𝑘 · 𝑋))) + ((𝐵𝑘) · (sin‘(𝑘 · 𝑋)))) = (seq1( + , (𝑗 ∈ ℕ ↦ (((𝐴𝑗) · (cos‘(𝑗 · 𝑋))) + ((𝐵𝑗) · (sin‘(𝑗 · 𝑋))))))‘𝑛))
681650, 680chvarvv 1995 . . . . . 6 ((𝜑𝑙 ∈ ℕ) → Σ𝑘 ∈ (1...𝑙)(((𝐴𝑘) · (cos‘(𝑘 · 𝑋))) + ((𝐵𝑘) · (sin‘(𝑘 · 𝑋)))) = (seq1( + , (𝑗 ∈ ℕ ↦ (((𝐴𝑗) · (cos‘(𝑗 · 𝑋))) + ((𝐵𝑗) · (sin‘(𝑗 · 𝑋))))))‘𝑙))
682645, 681eqtrd 2768 . . . . 5 ((𝜑𝑙 ∈ ℕ) → ((𝑛 ∈ ℕ ↦ Σ𝑘 ∈ (1...𝑛)(((𝐴𝑘) · (cos‘(𝑘 · 𝑋))) + ((𝐵𝑘) · (sin‘(𝑘 · 𝑋)))))‘𝑙) = (seq1( + , (𝑗 ∈ ℕ ↦ (((𝐴𝑗) · (cos‘(𝑗 · 𝑋))) + ((𝐵𝑗) · (sin‘(𝑗 · 𝑋))))))‘𝑙))
68314, 558, 623, 15, 682climeq 15537 . . . 4 (𝜑 → ((𝑛 ∈ ℕ ↦ Σ𝑘 ∈ (1...𝑛)(((𝐴𝑘) · (cos‘(𝑘 · 𝑋))) + ((𝐵𝑘) · (sin‘(𝑘 · 𝑋))))) ⇝ (((𝐿 + 𝑅) / 2) − ((𝐴‘0) / 2)) ↔ seq1( + , (𝑗 ∈ ℕ ↦ (((𝐴𝑗) · (cos‘(𝑗 · 𝑋))) + ((𝐵𝑗) · (sin‘(𝑗 · 𝑋)))))) ⇝ (((𝐿 + 𝑅) / 2) − ((𝐴‘0) / 2))))
684621, 683mpbid 231 . . 3 (𝜑 → seq1( + , (𝑗 ∈ ℕ ↦ (((𝐴𝑗) · (cos‘(𝑗 · 𝑋))) + ((𝐵𝑗) · (sin‘(𝑗 · 𝑋)))))) ⇝ (((𝐿 + 𝑅) / 2) − ((𝐴‘0) / 2)))
68513, 684eqbrtrd 5164 . 2 (𝜑 → seq1( + , 𝑆) ⇝ (((𝐿 + 𝑅) / 2) − ((𝐴‘0) / 2)))
686 eqidd 2729 . . . . . 6 ((𝜑𝑛 ∈ ℕ) → (𝑗 ∈ ℕ ↦ (((𝐴𝑗) · (cos‘(𝑗 · 𝑋))) + ((𝐵𝑗) · (sin‘(𝑗 · 𝑋))))) = (𝑗 ∈ ℕ ↦ (((𝐴𝑗) · (cos‘(𝑗 · 𝑋))) + ((𝐵𝑗) · (sin‘(𝑗 · 𝑋))))))
687 fveq2 6891 . . . . . . . . 9 (𝑗 = 𝑛 → (𝐴𝑗) = (𝐴𝑛))
688 oveq1 7421 . . . . . . . . . 10 (𝑗 = 𝑛 → (𝑗 · 𝑋) = (𝑛 · 𝑋))
689688fveq2d 6895 . . . . . . . . 9 (𝑗 = 𝑛 → (cos‘(𝑗 · 𝑋)) = (cos‘(𝑛 · 𝑋)))
690687, 689oveq12d 7432 . . . . . . . 8 (𝑗 = 𝑛 → ((𝐴𝑗) · (cos‘(𝑗 · 𝑋))) = ((𝐴𝑛) · (cos‘(𝑛 · 𝑋))))
691 fveq2 6891 . . . . . . . . 9 (𝑗 = 𝑛 → (𝐵𝑗) = (𝐵𝑛))
692688fveq2d 6895 . . . . . . . . 9 (𝑗 = 𝑛 → (sin‘(𝑗 · 𝑋)) = (sin‘(𝑛 · 𝑋)))
693691, 692oveq12d 7432 . . . . . . . 8 (𝑗 = 𝑛 → ((𝐵𝑗) · (sin‘(𝑗 · 𝑋))) = ((𝐵𝑛) · (sin‘(𝑛 · 𝑋))))
694690, 693oveq12d 7432 . . . . . . 7 (𝑗 = 𝑛 → (((𝐴𝑗) · (cos‘(𝑗 · 𝑋))) + ((𝐵𝑗) · (sin‘(𝑗 · 𝑋)))) = (((𝐴𝑛) · (cos‘(𝑛 · 𝑋))) + ((𝐵𝑛) · (sin‘(𝑛 · 𝑋)))))
695694adantl 481 . . . . . 6 (((𝜑𝑛 ∈ ℕ) ∧ 𝑗 = 𝑛) → (((𝐴𝑗) · (cos‘(𝑗 · 𝑋))) + ((𝐵𝑗) · (sin‘(𝑗 · 𝑋)))) = (((𝐴𝑛) · (cos‘(𝑛 · 𝑋))) + ((𝐵𝑛) · (sin‘(𝑛 · 𝑋)))))
696686, 695, 362, 596fvmptd 7006 . . . . 5 ((𝜑𝑛 ∈ ℕ) → ((𝑗 ∈ ℕ ↦ (((𝐴𝑗) · (cos‘(𝑗 · 𝑋))) + ((𝐵𝑗) · (sin‘(𝑗 · 𝑋)))))‘𝑛) = (((𝐴𝑛) · (cos‘(𝑛 · 𝑋))) + ((𝐵𝑛) · (sin‘(𝑛 · 𝑋)))))
697596recnd 11266 . . . . 5 ((𝜑𝑛 ∈ ℕ) → (((𝐴𝑛) · (cos‘(𝑛 · 𝑋))) + ((𝐵𝑛) · (sin‘(𝑛 · 𝑋)))) ∈ ℂ)
69814, 15, 696, 697, 684isumclim 15729 . . . 4 (𝜑 → Σ𝑛 ∈ ℕ (((𝐴𝑛) · (cos‘(𝑛 · 𝑋))) + ((𝐵𝑛) · (sin‘(𝑛 · 𝑋)))) = (((𝐿 + 𝑅) / 2) − ((𝐴‘0) / 2)))
699698oveq2d 7430 . . 3 (𝜑 → (((𝐴‘0) / 2) + Σ𝑛 ∈ ℕ (((𝐴𝑛) · (cos‘(𝑛 · 𝑋))) + ((𝐵𝑛) · (sin‘(𝑛 · 𝑋))))) = (((𝐴‘0) / 2) + (((𝐿 + 𝑅) / 2) − ((𝐴‘0) / 2))))
700503, 505addcld 11257 . . . . 5 (𝜑 → (𝐿 + 𝑅) ∈ ℂ)
701700halfcld 12481 . . . 4 (𝜑 → ((𝐿 + 𝑅) / 2) ∈ ℂ)
702556, 701pncan3d 11598 . . 3 (𝜑 → (((𝐴‘0) / 2) + (((𝐿 + 𝑅) / 2) − ((𝐴‘0) / 2))) = ((𝐿 + 𝑅) / 2))
703699, 702eqtrd 2768 . 2 (𝜑 → (((𝐴‘0) / 2) + Σ𝑛 ∈ ℕ (((𝐴𝑛) · (cos‘(𝑛 · 𝑋))) + ((𝐵𝑛) · (sin‘(𝑛 · 𝑋))))) = ((𝐿 + 𝑅) / 2))
704685, 703jca 511 1 (𝜑 → (seq1( + , 𝑆) ⇝ (((𝐿 + 𝑅) / 2) − ((𝐴‘0) / 2)) ∧ (((𝐴‘0) / 2) + Σ𝑛 ∈ ℕ (((𝐴𝑛) · (cos‘(𝑛 · 𝑋))) + ((𝐵𝑛) · (sin‘(𝑛 · 𝑋))))) = ((𝐿 + 𝑅) / 2)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 395   = wceq 1534  wcel 2099  wral 3057  wrex 3066  {crab 3428  Vcvv 3470  csb 3890  cun 3943  cin 3944  wss 3945  ifcif 4524  {cpr 4626   class class class wbr 5142  cmpt 5225  dom cdm 5672  ran crn 5673  cres 5674  cio 6492  wf 6538  cfv 6542   Isom wiso 6543  crio 7369  (class class class)co 7414  m cmap 8838  supcsup 9457  cc 11130  cr 11131  0cc0 11132  1c1 11133   + caddc 11135   · cmul 11137  +∞cpnf 11269  -∞cmnf 11270  *cxr 11271   < clt 11272  cle 11273  cmin 11468  -cneg 11469   / cdiv 11895  cn 12236  2c2 12291  0cn0 12496  cz 12582  cuz 12846  +crp 13000  (,)cioo 13350  (,]cioc 13351  [,]cicc 13353  ...cfz 13510  ..^cfzo 13653  cfl 13781   mod cmo 13860  seqcseq 13992  chash 14315  abscabs 15207  cli 15454  Σcsu 15658  sincsin 16033  cosccos 16034  πcpi 16036  cnccncf 24789  volcvol 25385  𝐿1cibl 25539  citg 25540   lim climc 25784   D cdv 25785
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1790  ax-4 1804  ax-5 1906  ax-6 1964  ax-7 2004  ax-8 2101  ax-9 2109  ax-10 2130  ax-11 2147  ax-12 2167  ax-ext 2699  ax-rep 5279  ax-sep 5293  ax-nul 5300  ax-pow 5359  ax-pr 5423  ax-un 7734  ax-inf2 9658  ax-cc 10452  ax-cnex 11188  ax-resscn 11189  ax-1cn 11190  ax-icn 11191  ax-addcl 11192  ax-addrcl 11193  ax-mulcl 11194  ax-mulrcl 11195  ax-mulcom 11196  ax-addass 11197  ax-mulass 11198  ax-distr 11199  ax-i2m1 11200  ax-1ne0 11201  ax-1rid 11202  ax-rnegex 11203  ax-rrecex 11204  ax-cnre 11205  ax-pre-lttri 11206  ax-pre-lttrn 11207  ax-pre-ltadd 11208  ax-pre-mulgt0 11209  ax-pre-sup 11210  ax-addf 11211
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 847  df-3or 1086  df-3an 1087  df-tru 1537  df-fal 1547  df-ex 1775  df-nf 1779  df-sb 2061  df-mo 2530  df-eu 2559  df-clab 2706  df-cleq 2720  df-clel 2806  df-nfc 2881  df-ne 2937  df-nel 3043  df-ral 3058  df-rex 3067  df-rmo 3372  df-reu 3373  df-rab 3429  df-v 3472  df-sbc 3776  df-csb 3891  df-dif 3948  df-un 3950  df-in 3952  df-ss 3962  df-pss 3964  df-symdif 4238  df-nul 4319  df-if 4525  df-pw 4600  df-sn 4625  df-pr 4627  df-tp 4629  df-op 4631  df-uni 4904  df-int 4945  df-iun 4993  df-iin 4994  df-disj 5108  df-br 5143  df-opab 5205  df-mpt 5226  df-tr 5260  df-id 5570  df-eprel 5576  df-po 5584  df-so 5585  df-fr 5627  df-se 5628  df-we 5629  df-xp 5678  df-rel 5679  df-cnv 5680  df-co 5681  df-dm 5682  df-rn 5683  df-res 5684  df-ima 5685  df-pred 6299  df-ord 6366  df-on 6367  df-lim 6368  df-suc 6369  df-iota 6494  df-fun 6544  df-fn 6545  df-f 6546  df-f1 6547  df-fo 6548  df-f1o 6549  df-fv 6550  df-isom 6551  df-riota 7370  df-ov 7417  df-oprab 7418  df-mpo 7419  df-of 7679  df-ofr 7680  df-om 7865  df-1st 7987  df-2nd 7988  df-supp 8160  df-frecs 8280  df-wrecs 8311  df-recs 8385  df-rdg 8424  df-1o 8480  df-2o 8481  df-oadd 8484  df-omul 8485  df-er 8718  df-map 8840  df-pm 8841  df-ixp 8910  df-en 8958  df-dom 8959  df-sdom 8960  df-fin 8961  df-fsupp 9380  df-fi 9428  df-sup 9459  df-inf 9460  df-oi 9527  df-dju 9918  df-card 9956  df-acn 9959  df-pnf 11274  df-mnf 11275  df-xr 11276  df-ltxr 11277  df-le 11278  df-sub 11470  df-neg 11471  df-div 11896  df-nn 12237  df-2 12299  df-3 12300  df-4 12301  df-5 12302  df-6 12303  df-7 12304  df-8 12305  df-9 12306  df-n0 12497  df-xnn0 12569  df-z 12583  df-dec 12702  df-uz 12847  df-q 12957  df-rp 13001  df-xneg 13118  df-xadd 13119  df-xmul 13120  df-ioo 13354  df-ioc 13355  df-ico 13356  df-icc 13357  df-fz 13511  df-fzo 13654  df-fl 13783  df-mod 13861  df-seq 13993  df-exp 14053  df-fac 14259  df-bc 14288  df-hash 14316  df-shft 15040  df-cj 15072  df-re 15073  df-im 15074  df-sqrt 15208  df-abs 15209  df-limsup 15441  df-clim 15458  df-rlim 15459  df-sum 15659  df-ef 16037  df-sin 16039  df-cos 16040  df-pi 16042  df-struct 17109  df-sets 17126  df-slot 17144  df-ndx 17156  df-base 17174  df-ress 17203  df-plusg 17239  df-mulr 17240  df-starv 17241  df-sca 17242  df-vsca 17243  df-ip 17244  df-tset 17245  df-ple 17246  df-ds 17248  df-unif 17249  df-hom 17250  df-cco 17251  df-rest 17397  df-topn 17398  df-0g 17416  df-gsum 17417  df-topgen 17418  df-pt 17419  df-prds 17422  df-xrs 17477  df-qtop 17482  df-imas 17483  df-xps 17485  df-mre 17559  df-mrc 17560  df-acs 17562  df-mgm 18593  df-sgrp 18672  df-mnd 18688  df-submnd 18734  df-mulg 19017  df-cntz 19261  df-cmn 19730  df-psmet 21264  df-xmet 21265  df-met 21266  df-bl 21267  df-mopn 21268  df-fbas 21269  df-fg 21270  df-cnfld 21273  df-top 22789  df-topon 22806  df-topsp 22828  df-bases 22842  df-cld 22916  df-ntr 22917  df-cls 22918  df-nei 22995  df-lp 23033  df-perf 23034  df-cn 23124  df-cnp 23125  df-t1 23211  df-haus 23212  df-cmp 23284  df-tx 23459  df-hmeo 23652  df-fil 23743  df-fm 23835  df-flim 23836  df-flf 23837  df-xms 24219  df-ms 24220  df-tms 24221  df-cncf 24791  df-ovol 25386  df-vol 25387  df-mbf 25541  df-itg1 25542  df-itg2 25543  df-ibl 25544  df-itg 25545  df-0p 25592  df-ditg 25769  df-limc 25788  df-dv 25789
This theorem is referenced by:  fourierdlem113  45601
  Copyright terms: Public domain W3C validator
OSZAR »