Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  fourierdlem84 Structured version   Visualization version   GIF version

Theorem fourierdlem84 45658
Description: If 𝐹 is piecewise coninuous and 𝐷 is continuous, then 𝐺 is continuous. (Contributed by Glauco Siliprandi, 11-Dec-2019.)
Hypotheses
Ref Expression
fourierdlem84.1 (𝜑𝐴 ∈ ℝ)
fourierdlem84.2 (𝜑𝐵 ∈ ℝ)
fourierdlem84.f (𝜑𝐹:ℝ⟶ℝ)
fourierdlem84.xre (𝜑𝑋 ∈ ℝ)
fourierdlem84.p 𝑃 = (𝑚 ∈ ℕ ↦ {𝑝 ∈ (ℝ ↑m (0...𝑚)) ∣ (((𝑝‘0) = (𝐴 + 𝑋) ∧ (𝑝𝑚) = (𝐵 + 𝑋)) ∧ ∀𝑖 ∈ (0..^𝑚)(𝑝𝑖) < (𝑝‘(𝑖 + 1)))})
fourierdlem84.m (𝜑𝑀 ∈ ℕ)
fourierdlem84.v (𝜑𝑉 ∈ (𝑃𝑀))
fourierdlem84.fcn ((𝜑𝑖 ∈ (0..^𝑀)) → (𝐹 ↾ ((𝑉𝑖)(,)(𝑉‘(𝑖 + 1)))) ∈ (((𝑉𝑖)(,)(𝑉‘(𝑖 + 1)))–cn→ℂ))
fourierdlem84.r ((𝜑𝑖 ∈ (0..^𝑀)) → 𝑅 ∈ ((𝐹 ↾ ((𝑉𝑖)(,)(𝑉‘(𝑖 + 1)))) lim (𝑉𝑖)))
fourierdlem84.l ((𝜑𝑖 ∈ (0..^𝑀)) → 𝐿 ∈ ((𝐹 ↾ ((𝑉𝑖)(,)(𝑉‘(𝑖 + 1)))) lim (𝑉‘(𝑖 + 1))))
fourierdlem84.q 𝑄 = (𝑖 ∈ (0...𝑀) ↦ ((𝑉𝑖) − 𝑋))
fourierdlem84.o 𝑂 = (𝑚 ∈ ℕ ↦ {𝑝 ∈ (ℝ ↑m (0...𝑚)) ∣ (((𝑝‘0) = 𝐴 ∧ (𝑝𝑚) = 𝐵) ∧ ∀𝑖 ∈ (0..^𝑚)(𝑝𝑖) < (𝑝‘(𝑖 + 1)))})
fourierdlem84.d (𝜑𝐷 ∈ (ℝ–cn→ℝ))
fourierdlem84.g 𝐺 = (𝑠 ∈ (𝐴[,]𝐵) ↦ ((𝐹‘(𝑋 + 𝑠)) · (𝐷𝑠)))
Assertion
Ref Expression
fourierdlem84 (𝜑𝐺 ∈ 𝐿1)
Distinct variable groups:   𝐴,𝑖,𝑚,𝑝   𝐴,𝑠,𝑖   𝐵,𝑖,𝑚,𝑝   𝐵,𝑠   𝐷,𝑠   𝐹,𝑠   𝑖,𝐺   𝐿,𝑠   𝑖,𝑀,𝑠   𝑚,𝑀,𝑝   𝑄,𝑖,𝑠   𝑄,𝑝   𝑅,𝑠   𝑖,𝑉,𝑠   𝑉,𝑝   𝑖,𝑋,𝑠   𝑚,𝑋,𝑝   𝜑,𝑖,𝑠
Allowed substitution hints:   𝜑(𝑚,𝑝)   𝐷(𝑖,𝑚,𝑝)   𝑃(𝑖,𝑚,𝑠,𝑝)   𝑄(𝑚)   𝑅(𝑖,𝑚,𝑝)   𝐹(𝑖,𝑚,𝑝)   𝐺(𝑚,𝑠,𝑝)   𝐿(𝑖,𝑚,𝑝)   𝑂(𝑖,𝑚,𝑠,𝑝)   𝑉(𝑚)

Proof of Theorem fourierdlem84
Dummy variable 𝑗 is distinct from all other variables.
StepHypRef Expression
1 fourierdlem84.o . 2 𝑂 = (𝑚 ∈ ℕ ↦ {𝑝 ∈ (ℝ ↑m (0...𝑚)) ∣ (((𝑝‘0) = 𝐴 ∧ (𝑝𝑚) = 𝐵) ∧ ∀𝑖 ∈ (0..^𝑚)(𝑝𝑖) < (𝑝‘(𝑖 + 1)))})
2 fourierdlem84.m . 2 (𝜑𝑀 ∈ ℕ)
3 fourierdlem84.1 . . 3 (𝜑𝐴 ∈ ℝ)
4 fourierdlem84.2 . . 3 (𝜑𝐵 ∈ ℝ)
5 fourierdlem84.xre . . 3 (𝜑𝑋 ∈ ℝ)
6 fourierdlem84.p . . 3 𝑃 = (𝑚 ∈ ℕ ↦ {𝑝 ∈ (ℝ ↑m (0...𝑚)) ∣ (((𝑝‘0) = (𝐴 + 𝑋) ∧ (𝑝𝑚) = (𝐵 + 𝑋)) ∧ ∀𝑖 ∈ (0..^𝑚)(𝑝𝑖) < (𝑝‘(𝑖 + 1)))})
7 fourierdlem84.v . . 3 (𝜑𝑉 ∈ (𝑃𝑀))
8 fourierdlem84.q . . 3 𝑄 = (𝑖 ∈ (0...𝑀) ↦ ((𝑉𝑖) − 𝑋))
93, 4, 5, 6, 1, 2, 7, 8fourierdlem14 45589 . 2 (𝜑𝑄 ∈ (𝑂𝑀))
10 fourierdlem84.f . . . . . . 7 (𝜑𝐹:ℝ⟶ℝ)
1110adantr 479 . . . . . 6 ((𝜑𝑠 ∈ (𝐴[,]𝐵)) → 𝐹:ℝ⟶ℝ)
125adantr 479 . . . . . . 7 ((𝜑𝑠 ∈ (𝐴[,]𝐵)) → 𝑋 ∈ ℝ)
133adantr 479 . . . . . . . 8 ((𝜑𝑠 ∈ (𝐴[,]𝐵)) → 𝐴 ∈ ℝ)
144adantr 479 . . . . . . . 8 ((𝜑𝑠 ∈ (𝐴[,]𝐵)) → 𝐵 ∈ ℝ)
15 simpr 483 . . . . . . . 8 ((𝜑𝑠 ∈ (𝐴[,]𝐵)) → 𝑠 ∈ (𝐴[,]𝐵))
16 eliccre 44970 . . . . . . . 8 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝑠 ∈ (𝐴[,]𝐵)) → 𝑠 ∈ ℝ)
1713, 14, 15, 16syl3anc 1368 . . . . . . 7 ((𝜑𝑠 ∈ (𝐴[,]𝐵)) → 𝑠 ∈ ℝ)
1812, 17readdcld 11273 . . . . . 6 ((𝜑𝑠 ∈ (𝐴[,]𝐵)) → (𝑋 + 𝑠) ∈ ℝ)
1911, 18ffvelcdmd 7092 . . . . 5 ((𝜑𝑠 ∈ (𝐴[,]𝐵)) → (𝐹‘(𝑋 + 𝑠)) ∈ ℝ)
20 fourierdlem84.d . . . . . . . 8 (𝜑𝐷 ∈ (ℝ–cn→ℝ))
21 cncff 24844 . . . . . . . 8 (𝐷 ∈ (ℝ–cn→ℝ) → 𝐷:ℝ⟶ℝ)
2220, 21syl 17 . . . . . . 7 (𝜑𝐷:ℝ⟶ℝ)
2322adantr 479 . . . . . 6 ((𝜑𝑠 ∈ (𝐴[,]𝐵)) → 𝐷:ℝ⟶ℝ)
2423, 17ffvelcdmd 7092 . . . . 5 ((𝜑𝑠 ∈ (𝐴[,]𝐵)) → (𝐷𝑠) ∈ ℝ)
2519, 24remulcld 11274 . . . 4 ((𝜑𝑠 ∈ (𝐴[,]𝐵)) → ((𝐹‘(𝑋 + 𝑠)) · (𝐷𝑠)) ∈ ℝ)
2625recnd 11272 . . 3 ((𝜑𝑠 ∈ (𝐴[,]𝐵)) → ((𝐹‘(𝑋 + 𝑠)) · (𝐷𝑠)) ∈ ℂ)
27 fourierdlem84.g . . 3 𝐺 = (𝑠 ∈ (𝐴[,]𝐵) ↦ ((𝐹‘(𝑋 + 𝑠)) · (𝐷𝑠)))
2826, 27fmptd 7121 . 2 (𝜑𝐺:(𝐴[,]𝐵)⟶ℂ)
2927a1i 11 . . . . 5 ((𝜑𝑖 ∈ (0..^𝑀)) → 𝐺 = (𝑠 ∈ (𝐴[,]𝐵) ↦ ((𝐹‘(𝑋 + 𝑠)) · (𝐷𝑠))))
3029reseq1d 5983 . . . 4 ((𝜑𝑖 ∈ (0..^𝑀)) → (𝐺 ↾ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))) = ((𝑠 ∈ (𝐴[,]𝐵) ↦ ((𝐹‘(𝑋 + 𝑠)) · (𝐷𝑠))) ↾ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))))
31 ioossicc 13442 . . . . . 6 ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))) ⊆ ((𝑄𝑖)[,](𝑄‘(𝑖 + 1)))
323rexrd 11294 . . . . . . . 8 (𝜑𝐴 ∈ ℝ*)
3332adantr 479 . . . . . . 7 ((𝜑𝑖 ∈ (0..^𝑀)) → 𝐴 ∈ ℝ*)
344rexrd 11294 . . . . . . . 8 (𝜑𝐵 ∈ ℝ*)
3534adantr 479 . . . . . . 7 ((𝜑𝑖 ∈ (0..^𝑀)) → 𝐵 ∈ ℝ*)
361, 2, 9fourierdlem15 45590 . . . . . . . 8 (𝜑𝑄:(0...𝑀)⟶(𝐴[,]𝐵))
3736adantr 479 . . . . . . 7 ((𝜑𝑖 ∈ (0..^𝑀)) → 𝑄:(0...𝑀)⟶(𝐴[,]𝐵))
38 simpr 483 . . . . . . 7 ((𝜑𝑖 ∈ (0..^𝑀)) → 𝑖 ∈ (0..^𝑀))
3933, 35, 37, 38fourierdlem8 45583 . . . . . 6 ((𝜑𝑖 ∈ (0..^𝑀)) → ((𝑄𝑖)[,](𝑄‘(𝑖 + 1))) ⊆ (𝐴[,]𝐵))
4031, 39sstrid 3989 . . . . 5 ((𝜑𝑖 ∈ (0..^𝑀)) → ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))) ⊆ (𝐴[,]𝐵))
4140resmptd 6044 . . . 4 ((𝜑𝑖 ∈ (0..^𝑀)) → ((𝑠 ∈ (𝐴[,]𝐵) ↦ ((𝐹‘(𝑋 + 𝑠)) · (𝐷𝑠))) ↾ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))) = (𝑠 ∈ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))) ↦ ((𝐹‘(𝑋 + 𝑠)) · (𝐷𝑠))))
4230, 41eqtrd 2765 . . 3 ((𝜑𝑖 ∈ (0..^𝑀)) → (𝐺 ↾ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))) = (𝑠 ∈ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))) ↦ ((𝐹‘(𝑋 + 𝑠)) · (𝐷𝑠))))
433, 5readdcld 11273 . . . . . . . . . . . . . 14 (𝜑 → (𝐴 + 𝑋) ∈ ℝ)
444, 5readdcld 11273 . . . . . . . . . . . . . 14 (𝜑 → (𝐵 + 𝑋) ∈ ℝ)
4543, 44iccssred 13443 . . . . . . . . . . . . 13 (𝜑 → ((𝐴 + 𝑋)[,](𝐵 + 𝑋)) ⊆ ℝ)
4645adantr 479 . . . . . . . . . . . 12 ((𝜑𝑖 ∈ (0..^𝑀)) → ((𝐴 + 𝑋)[,](𝐵 + 𝑋)) ⊆ ℝ)
476, 2, 7fourierdlem15 45590 . . . . . . . . . . . . . 14 (𝜑𝑉:(0...𝑀)⟶((𝐴 + 𝑋)[,](𝐵 + 𝑋)))
4847adantr 479 . . . . . . . . . . . . 13 ((𝜑𝑖 ∈ (0..^𝑀)) → 𝑉:(0...𝑀)⟶((𝐴 + 𝑋)[,](𝐵 + 𝑋)))
49 elfzofz 13680 . . . . . . . . . . . . . 14 (𝑖 ∈ (0..^𝑀) → 𝑖 ∈ (0...𝑀))
5049adantl 480 . . . . . . . . . . . . 13 ((𝜑𝑖 ∈ (0..^𝑀)) → 𝑖 ∈ (0...𝑀))
5148, 50ffvelcdmd 7092 . . . . . . . . . . . 12 ((𝜑𝑖 ∈ (0..^𝑀)) → (𝑉𝑖) ∈ ((𝐴 + 𝑋)[,](𝐵 + 𝑋)))
5246, 51sseldd 3978 . . . . . . . . . . 11 ((𝜑𝑖 ∈ (0..^𝑀)) → (𝑉𝑖) ∈ ℝ)
5352rexrd 11294 . . . . . . . . . 10 ((𝜑𝑖 ∈ (0..^𝑀)) → (𝑉𝑖) ∈ ℝ*)
5453adantr 479 . . . . . . . . 9 (((𝜑𝑖 ∈ (0..^𝑀)) ∧ 𝑠 ∈ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))) → (𝑉𝑖) ∈ ℝ*)
55 fzofzp1 13762 . . . . . . . . . . . . . 14 (𝑖 ∈ (0..^𝑀) → (𝑖 + 1) ∈ (0...𝑀))
5655adantl 480 . . . . . . . . . . . . 13 ((𝜑𝑖 ∈ (0..^𝑀)) → (𝑖 + 1) ∈ (0...𝑀))
5748, 56ffvelcdmd 7092 . . . . . . . . . . . 12 ((𝜑𝑖 ∈ (0..^𝑀)) → (𝑉‘(𝑖 + 1)) ∈ ((𝐴 + 𝑋)[,](𝐵 + 𝑋)))
5846, 57sseldd 3978 . . . . . . . . . . 11 ((𝜑𝑖 ∈ (0..^𝑀)) → (𝑉‘(𝑖 + 1)) ∈ ℝ)
5958rexrd 11294 . . . . . . . . . 10 ((𝜑𝑖 ∈ (0..^𝑀)) → (𝑉‘(𝑖 + 1)) ∈ ℝ*)
6059adantr 479 . . . . . . . . 9 (((𝜑𝑖 ∈ (0..^𝑀)) ∧ 𝑠 ∈ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))) → (𝑉‘(𝑖 + 1)) ∈ ℝ*)
615ad2antrr 724 . . . . . . . . . 10 (((𝜑𝑖 ∈ (0..^𝑀)) ∧ 𝑠 ∈ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))) → 𝑋 ∈ ℝ)
62 elioore 13386 . . . . . . . . . . 11 (𝑠 ∈ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))) → 𝑠 ∈ ℝ)
6362adantl 480 . . . . . . . . . 10 (((𝜑𝑖 ∈ (0..^𝑀)) ∧ 𝑠 ∈ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))) → 𝑠 ∈ ℝ)
6461, 63readdcld 11273 . . . . . . . . 9 (((𝜑𝑖 ∈ (0..^𝑀)) ∧ 𝑠 ∈ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))) → (𝑋 + 𝑠) ∈ ℝ)
655recnd 11272 . . . . . . . . . . . . . 14 (𝜑𝑋 ∈ ℂ)
6665adantr 479 . . . . . . . . . . . . 13 ((𝜑𝑖 ∈ (0..^𝑀)) → 𝑋 ∈ ℂ)
673, 4iccssred 13443 . . . . . . . . . . . . . . . 16 (𝜑 → (𝐴[,]𝐵) ⊆ ℝ)
6867adantr 479 . . . . . . . . . . . . . . 15 ((𝜑𝑖 ∈ (0..^𝑀)) → (𝐴[,]𝐵) ⊆ ℝ)
6937, 50ffvelcdmd 7092 . . . . . . . . . . . . . . 15 ((𝜑𝑖 ∈ (0..^𝑀)) → (𝑄𝑖) ∈ (𝐴[,]𝐵))
7068, 69sseldd 3978 . . . . . . . . . . . . . 14 ((𝜑𝑖 ∈ (0..^𝑀)) → (𝑄𝑖) ∈ ℝ)
7170recnd 11272 . . . . . . . . . . . . 13 ((𝜑𝑖 ∈ (0..^𝑀)) → (𝑄𝑖) ∈ ℂ)
7266, 71addcomd 11446 . . . . . . . . . . . 12 ((𝜑𝑖 ∈ (0..^𝑀)) → (𝑋 + (𝑄𝑖)) = ((𝑄𝑖) + 𝑋))
735adantr 479 . . . . . . . . . . . . . . 15 ((𝜑𝑖 ∈ (0..^𝑀)) → 𝑋 ∈ ℝ)
7452, 73resubcld 11672 . . . . . . . . . . . . . 14 ((𝜑𝑖 ∈ (0..^𝑀)) → ((𝑉𝑖) − 𝑋) ∈ ℝ)
758fvmpt2 7013 . . . . . . . . . . . . . 14 ((𝑖 ∈ (0...𝑀) ∧ ((𝑉𝑖) − 𝑋) ∈ ℝ) → (𝑄𝑖) = ((𝑉𝑖) − 𝑋))
7650, 74, 75syl2anc 582 . . . . . . . . . . . . 13 ((𝜑𝑖 ∈ (0..^𝑀)) → (𝑄𝑖) = ((𝑉𝑖) − 𝑋))
7776oveq1d 7432 . . . . . . . . . . . 12 ((𝜑𝑖 ∈ (0..^𝑀)) → ((𝑄𝑖) + 𝑋) = (((𝑉𝑖) − 𝑋) + 𝑋))
7852recnd 11272 . . . . . . . . . . . . 13 ((𝜑𝑖 ∈ (0..^𝑀)) → (𝑉𝑖) ∈ ℂ)
7978, 66npcand 11605 . . . . . . . . . . . 12 ((𝜑𝑖 ∈ (0..^𝑀)) → (((𝑉𝑖) − 𝑋) + 𝑋) = (𝑉𝑖))
8072, 77, 793eqtrrd 2770 . . . . . . . . . . 11 ((𝜑𝑖 ∈ (0..^𝑀)) → (𝑉𝑖) = (𝑋 + (𝑄𝑖)))
8180adantr 479 . . . . . . . . . 10 (((𝜑𝑖 ∈ (0..^𝑀)) ∧ 𝑠 ∈ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))) → (𝑉𝑖) = (𝑋 + (𝑄𝑖)))
8270adantr 479 . . . . . . . . . . 11 (((𝜑𝑖 ∈ (0..^𝑀)) ∧ 𝑠 ∈ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))) → (𝑄𝑖) ∈ ℝ)
8370rexrd 11294 . . . . . . . . . . . . 13 ((𝜑𝑖 ∈ (0..^𝑀)) → (𝑄𝑖) ∈ ℝ*)
8483adantr 479 . . . . . . . . . . . 12 (((𝜑𝑖 ∈ (0..^𝑀)) ∧ 𝑠 ∈ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))) → (𝑄𝑖) ∈ ℝ*)
8537, 68fssd 6738 . . . . . . . . . . . . . . 15 ((𝜑𝑖 ∈ (0..^𝑀)) → 𝑄:(0...𝑀)⟶ℝ)
8685, 56ffvelcdmd 7092 . . . . . . . . . . . . . 14 ((𝜑𝑖 ∈ (0..^𝑀)) → (𝑄‘(𝑖 + 1)) ∈ ℝ)
8786rexrd 11294 . . . . . . . . . . . . 13 ((𝜑𝑖 ∈ (0..^𝑀)) → (𝑄‘(𝑖 + 1)) ∈ ℝ*)
8887adantr 479 . . . . . . . . . . . 12 (((𝜑𝑖 ∈ (0..^𝑀)) ∧ 𝑠 ∈ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))) → (𝑄‘(𝑖 + 1)) ∈ ℝ*)
89 simpr 483 . . . . . . . . . . . 12 (((𝜑𝑖 ∈ (0..^𝑀)) ∧ 𝑠 ∈ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))) → 𝑠 ∈ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))))
90 ioogtlb 44960 . . . . . . . . . . . 12 (((𝑄𝑖) ∈ ℝ* ∧ (𝑄‘(𝑖 + 1)) ∈ ℝ*𝑠 ∈ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))) → (𝑄𝑖) < 𝑠)
9184, 88, 89, 90syl3anc 1368 . . . . . . . . . . 11 (((𝜑𝑖 ∈ (0..^𝑀)) ∧ 𝑠 ∈ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))) → (𝑄𝑖) < 𝑠)
9282, 63, 61, 91ltadd2dd 11403 . . . . . . . . . 10 (((𝜑𝑖 ∈ (0..^𝑀)) ∧ 𝑠 ∈ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))) → (𝑋 + (𝑄𝑖)) < (𝑋 + 𝑠))
9381, 92eqbrtrd 5170 . . . . . . . . 9 (((𝜑𝑖 ∈ (0..^𝑀)) ∧ 𝑠 ∈ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))) → (𝑉𝑖) < (𝑋 + 𝑠))
9486adantr 479 . . . . . . . . . . 11 (((𝜑𝑖 ∈ (0..^𝑀)) ∧ 𝑠 ∈ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))) → (𝑄‘(𝑖 + 1)) ∈ ℝ)
95 iooltub 44975 . . . . . . . . . . . 12 (((𝑄𝑖) ∈ ℝ* ∧ (𝑄‘(𝑖 + 1)) ∈ ℝ*𝑠 ∈ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))) → 𝑠 < (𝑄‘(𝑖 + 1)))
9684, 88, 89, 95syl3anc 1368 . . . . . . . . . . 11 (((𝜑𝑖 ∈ (0..^𝑀)) ∧ 𝑠 ∈ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))) → 𝑠 < (𝑄‘(𝑖 + 1)))
9763, 94, 61, 96ltadd2dd 11403 . . . . . . . . . 10 (((𝜑𝑖 ∈ (0..^𝑀)) ∧ 𝑠 ∈ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))) → (𝑋 + 𝑠) < (𝑋 + (𝑄‘(𝑖 + 1))))
98 fveq2 6894 . . . . . . . . . . . . . . . . . 18 (𝑖 = 𝑗 → (𝑉𝑖) = (𝑉𝑗))
9998oveq1d 7432 . . . . . . . . . . . . . . . . 17 (𝑖 = 𝑗 → ((𝑉𝑖) − 𝑋) = ((𝑉𝑗) − 𝑋))
10099cbvmptv 5261 . . . . . . . . . . . . . . . 16 (𝑖 ∈ (0...𝑀) ↦ ((𝑉𝑖) − 𝑋)) = (𝑗 ∈ (0...𝑀) ↦ ((𝑉𝑗) − 𝑋))
1018, 100eqtri 2753 . . . . . . . . . . . . . . 15 𝑄 = (𝑗 ∈ (0...𝑀) ↦ ((𝑉𝑗) − 𝑋))
102101a1i 11 . . . . . . . . . . . . . 14 ((𝜑𝑖 ∈ (0..^𝑀)) → 𝑄 = (𝑗 ∈ (0...𝑀) ↦ ((𝑉𝑗) − 𝑋)))
103 fveq2 6894 . . . . . . . . . . . . . . . 16 (𝑗 = (𝑖 + 1) → (𝑉𝑗) = (𝑉‘(𝑖 + 1)))
104103oveq1d 7432 . . . . . . . . . . . . . . 15 (𝑗 = (𝑖 + 1) → ((𝑉𝑗) − 𝑋) = ((𝑉‘(𝑖 + 1)) − 𝑋))
105104adantl 480 . . . . . . . . . . . . . 14 (((𝜑𝑖 ∈ (0..^𝑀)) ∧ 𝑗 = (𝑖 + 1)) → ((𝑉𝑗) − 𝑋) = ((𝑉‘(𝑖 + 1)) − 𝑋))
10658, 73resubcld 11672 . . . . . . . . . . . . . 14 ((𝜑𝑖 ∈ (0..^𝑀)) → ((𝑉‘(𝑖 + 1)) − 𝑋) ∈ ℝ)
107102, 105, 56, 106fvmptd 7009 . . . . . . . . . . . . 13 ((𝜑𝑖 ∈ (0..^𝑀)) → (𝑄‘(𝑖 + 1)) = ((𝑉‘(𝑖 + 1)) − 𝑋))
108107oveq2d 7433 . . . . . . . . . . . 12 ((𝜑𝑖 ∈ (0..^𝑀)) → (𝑋 + (𝑄‘(𝑖 + 1))) = (𝑋 + ((𝑉‘(𝑖 + 1)) − 𝑋)))
10958recnd 11272 . . . . . . . . . . . . 13 ((𝜑𝑖 ∈ (0..^𝑀)) → (𝑉‘(𝑖 + 1)) ∈ ℂ)
11066, 109pncan3d 11604 . . . . . . . . . . . 12 ((𝜑𝑖 ∈ (0..^𝑀)) → (𝑋 + ((𝑉‘(𝑖 + 1)) − 𝑋)) = (𝑉‘(𝑖 + 1)))
111108, 110eqtrd 2765 . . . . . . . . . . 11 ((𝜑𝑖 ∈ (0..^𝑀)) → (𝑋 + (𝑄‘(𝑖 + 1))) = (𝑉‘(𝑖 + 1)))
112111adantr 479 . . . . . . . . . 10 (((𝜑𝑖 ∈ (0..^𝑀)) ∧ 𝑠 ∈ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))) → (𝑋 + (𝑄‘(𝑖 + 1))) = (𝑉‘(𝑖 + 1)))
11397, 112breqtrd 5174 . . . . . . . . 9 (((𝜑𝑖 ∈ (0..^𝑀)) ∧ 𝑠 ∈ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))) → (𝑋 + 𝑠) < (𝑉‘(𝑖 + 1)))
11454, 60, 64, 93, 113eliood 44963 . . . . . . . 8 (((𝜑𝑖 ∈ (0..^𝑀)) ∧ 𝑠 ∈ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))) → (𝑋 + 𝑠) ∈ ((𝑉𝑖)(,)(𝑉‘(𝑖 + 1))))
115 fvres 6913 . . . . . . . 8 ((𝑋 + 𝑠) ∈ ((𝑉𝑖)(,)(𝑉‘(𝑖 + 1))) → ((𝐹 ↾ ((𝑉𝑖)(,)(𝑉‘(𝑖 + 1))))‘(𝑋 + 𝑠)) = (𝐹‘(𝑋 + 𝑠)))
116114, 115syl 17 . . . . . . 7 (((𝜑𝑖 ∈ (0..^𝑀)) ∧ 𝑠 ∈ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))) → ((𝐹 ↾ ((𝑉𝑖)(,)(𝑉‘(𝑖 + 1))))‘(𝑋 + 𝑠)) = (𝐹‘(𝑋 + 𝑠)))
117116eqcomd 2731 . . . . . 6 (((𝜑𝑖 ∈ (0..^𝑀)) ∧ 𝑠 ∈ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))) → (𝐹‘(𝑋 + 𝑠)) = ((𝐹 ↾ ((𝑉𝑖)(,)(𝑉‘(𝑖 + 1))))‘(𝑋 + 𝑠)))
118117mpteq2dva 5248 . . . . 5 ((𝜑𝑖 ∈ (0..^𝑀)) → (𝑠 ∈ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))) ↦ (𝐹‘(𝑋 + 𝑠))) = (𝑠 ∈ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))) ↦ ((𝐹 ↾ ((𝑉𝑖)(,)(𝑉‘(𝑖 + 1))))‘(𝑋 + 𝑠))))
119 ioosscn 13418 . . . . . . 7 ((𝑉𝑖)(,)(𝑉‘(𝑖 + 1))) ⊆ ℂ
120119a1i 11 . . . . . 6 ((𝜑𝑖 ∈ (0..^𝑀)) → ((𝑉𝑖)(,)(𝑉‘(𝑖 + 1))) ⊆ ℂ)
121 fourierdlem84.fcn . . . . . 6 ((𝜑𝑖 ∈ (0..^𝑀)) → (𝐹 ↾ ((𝑉𝑖)(,)(𝑉‘(𝑖 + 1)))) ∈ (((𝑉𝑖)(,)(𝑉‘(𝑖 + 1)))–cn→ℂ))
122 ioosscn 13418 . . . . . . 7 ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))) ⊆ ℂ
123122a1i 11 . . . . . 6 ((𝜑𝑖 ∈ (0..^𝑀)) → ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))) ⊆ ℂ)
124120, 121, 123, 66, 114fourierdlem23 45598 . . . . 5 ((𝜑𝑖 ∈ (0..^𝑀)) → (𝑠 ∈ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))) ↦ ((𝐹 ↾ ((𝑉𝑖)(,)(𝑉‘(𝑖 + 1))))‘(𝑋 + 𝑠))) ∈ (((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))–cn→ℂ))
125118, 124eqeltrd 2825 . . . 4 ((𝜑𝑖 ∈ (0..^𝑀)) → (𝑠 ∈ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))) ↦ (𝐹‘(𝑋 + 𝑠))) ∈ (((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))–cn→ℂ))
126 eqid 2725 . . . . 5 (𝑠 ∈ ℝ ↦ (𝐷𝑠)) = (𝑠 ∈ ℝ ↦ (𝐷𝑠))
127 ax-resscn 11195 . . . . . . . 8 ℝ ⊆ ℂ
128 ssid 4000 . . . . . . . 8 ℂ ⊆ ℂ
129 cncfss 24850 . . . . . . . 8 ((ℝ ⊆ ℂ ∧ ℂ ⊆ ℂ) → (ℝ–cn→ℝ) ⊆ (ℝ–cn→ℂ))
130127, 128, 129mp2an 690 . . . . . . 7 (ℝ–cn→ℝ) ⊆ (ℝ–cn→ℂ)
13122feqmptd 6964 . . . . . . . . 9 (𝜑𝐷 = (𝑠 ∈ ℝ ↦ (𝐷𝑠)))
132131eqcomd 2731 . . . . . . . 8 (𝜑 → (𝑠 ∈ ℝ ↦ (𝐷𝑠)) = 𝐷)
133132, 20eqeltrd 2825 . . . . . . 7 (𝜑 → (𝑠 ∈ ℝ ↦ (𝐷𝑠)) ∈ (ℝ–cn→ℝ))
134130, 133sselid 3975 . . . . . 6 (𝜑 → (𝑠 ∈ ℝ ↦ (𝐷𝑠)) ∈ (ℝ–cn→ℂ))
135134adantr 479 . . . . 5 ((𝜑𝑖 ∈ (0..^𝑀)) → (𝑠 ∈ ℝ ↦ (𝐷𝑠)) ∈ (ℝ–cn→ℂ))
13640, 68sstrd 3988 . . . . 5 ((𝜑𝑖 ∈ (0..^𝑀)) → ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))) ⊆ ℝ)
137128a1i 11 . . . . 5 ((𝜑𝑖 ∈ (0..^𝑀)) → ℂ ⊆ ℂ)
13822adantr 479 . . . . . . . 8 ((𝜑𝑠 ∈ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))) → 𝐷:ℝ⟶ℝ)
13962adantl 480 . . . . . . . 8 ((𝜑𝑠 ∈ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))) → 𝑠 ∈ ℝ)
140138, 139ffvelcdmd 7092 . . . . . . 7 ((𝜑𝑠 ∈ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))) → (𝐷𝑠) ∈ ℝ)
141140recnd 11272 . . . . . 6 ((𝜑𝑠 ∈ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))) → (𝐷𝑠) ∈ ℂ)
142141adantlr 713 . . . . 5 (((𝜑𝑖 ∈ (0..^𝑀)) ∧ 𝑠 ∈ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))) → (𝐷𝑠) ∈ ℂ)
143126, 135, 136, 137, 142cncfmptssg 45339 . . . 4 ((𝜑𝑖 ∈ (0..^𝑀)) → (𝑠 ∈ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))) ↦ (𝐷𝑠)) ∈ (((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))–cn→ℂ))
144125, 143mulcncf 25405 . . 3 ((𝜑𝑖 ∈ (0..^𝑀)) → (𝑠 ∈ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))) ↦ ((𝐹‘(𝑋 + 𝑠)) · (𝐷𝑠))) ∈ (((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))–cn→ℂ))
14542, 144eqeltrd 2825 . 2 ((𝜑𝑖 ∈ (0..^𝑀)) → (𝐺 ↾ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))) ∈ (((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))–cn→ℂ))
146 eqid 2725 . . . 4 (𝑠 ∈ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))) ↦ (𝐹‘(𝑋 + 𝑠))) = (𝑠 ∈ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))) ↦ (𝐹‘(𝑋 + 𝑠)))
147 eqid 2725 . . . 4 (𝑠 ∈ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))) ↦ (𝐷𝑠)) = (𝑠 ∈ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))) ↦ (𝐷𝑠))
148 eqid 2725 . . . 4 (𝑠 ∈ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))) ↦ ((𝐹‘(𝑋 + 𝑠)) · (𝐷𝑠))) = (𝑠 ∈ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))) ↦ ((𝐹‘(𝑋 + 𝑠)) · (𝐷𝑠)))
14910adantr 479 . . . . . . 7 ((𝜑𝑠 ∈ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))) → 𝐹:ℝ⟶ℝ)
1505adantr 479 . . . . . . . 8 ((𝜑𝑠 ∈ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))) → 𝑋 ∈ ℝ)
151150, 139readdcld 11273 . . . . . . 7 ((𝜑𝑠 ∈ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))) → (𝑋 + 𝑠) ∈ ℝ)
152149, 151ffvelcdmd 7092 . . . . . 6 ((𝜑𝑠 ∈ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))) → (𝐹‘(𝑋 + 𝑠)) ∈ ℝ)
153152recnd 11272 . . . . 5 ((𝜑𝑠 ∈ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))) → (𝐹‘(𝑋 + 𝑠)) ∈ ℂ)
154153adantlr 713 . . . 4 (((𝜑𝑖 ∈ (0..^𝑀)) ∧ 𝑠 ∈ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))) → (𝐹‘(𝑋 + 𝑠)) ∈ ℂ)
15510adantr 479 . . . . 5 ((𝜑𝑖 ∈ (0..^𝑀)) → 𝐹:ℝ⟶ℝ)
156 ioossre 13417 . . . . . 6 ((𝑉𝑖)(,)(𝑉‘(𝑖 + 1))) ⊆ ℝ
157156a1i 11 . . . . 5 ((𝜑𝑖 ∈ (0..^𝑀)) → ((𝑉𝑖)(,)(𝑉‘(𝑖 + 1))) ⊆ ℝ)
15882, 91gtned 11379 . . . . 5 (((𝜑𝑖 ∈ (0..^𝑀)) ∧ 𝑠 ∈ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))) → 𝑠 ≠ (𝑄𝑖))
159 fourierdlem84.r . . . . . 6 ((𝜑𝑖 ∈ (0..^𝑀)) → 𝑅 ∈ ((𝐹 ↾ ((𝑉𝑖)(,)(𝑉‘(𝑖 + 1)))) lim (𝑉𝑖)))
16080oveq2d 7433 . . . . . 6 ((𝜑𝑖 ∈ (0..^𝑀)) → ((𝐹 ↾ ((𝑉𝑖)(,)(𝑉‘(𝑖 + 1)))) lim (𝑉𝑖)) = ((𝐹 ↾ ((𝑉𝑖)(,)(𝑉‘(𝑖 + 1)))) lim (𝑋 + (𝑄𝑖))))
161159, 160eleqtrd 2827 . . . . 5 ((𝜑𝑖 ∈ (0..^𝑀)) → 𝑅 ∈ ((𝐹 ↾ ((𝑉𝑖)(,)(𝑉‘(𝑖 + 1)))) lim (𝑋 + (𝑄𝑖))))
162155, 73, 136, 146, 114, 157, 158, 161, 71fourierdlem53 45627 . . . 4 ((𝜑𝑖 ∈ (0..^𝑀)) → 𝑅 ∈ ((𝑠 ∈ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))) ↦ (𝐹‘(𝑋 + 𝑠))) lim (𝑄𝑖)))
163 limcresi 25845 . . . . . 6 ((𝑠 ∈ ℝ ↦ (𝐷𝑠)) lim (𝑄𝑖)) ⊆ (((𝑠 ∈ ℝ ↦ (𝐷𝑠)) ↾ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))) lim (𝑄𝑖))
164130, 20sselid 3975 . . . . . . . . 9 (𝜑𝐷 ∈ (ℝ–cn→ℂ))
165164adantr 479 . . . . . . . 8 ((𝜑𝑖 ∈ (0..^𝑀)) → 𝐷 ∈ (ℝ–cn→ℂ))
166165, 70cnlimci 25849 . . . . . . 7 ((𝜑𝑖 ∈ (0..^𝑀)) → (𝐷‘(𝑄𝑖)) ∈ (𝐷 lim (𝑄𝑖)))
167131oveq1d 7432 . . . . . . . 8 (𝜑 → (𝐷 lim (𝑄𝑖)) = ((𝑠 ∈ ℝ ↦ (𝐷𝑠)) lim (𝑄𝑖)))
168167adantr 479 . . . . . . 7 ((𝜑𝑖 ∈ (0..^𝑀)) → (𝐷 lim (𝑄𝑖)) = ((𝑠 ∈ ℝ ↦ (𝐷𝑠)) lim (𝑄𝑖)))
169166, 168eleqtrd 2827 . . . . . 6 ((𝜑𝑖 ∈ (0..^𝑀)) → (𝐷‘(𝑄𝑖)) ∈ ((𝑠 ∈ ℝ ↦ (𝐷𝑠)) lim (𝑄𝑖)))
170163, 169sselid 3975 . . . . 5 ((𝜑𝑖 ∈ (0..^𝑀)) → (𝐷‘(𝑄𝑖)) ∈ (((𝑠 ∈ ℝ ↦ (𝐷𝑠)) ↾ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))) lim (𝑄𝑖)))
171136resmptd 6044 . . . . . 6 ((𝜑𝑖 ∈ (0..^𝑀)) → ((𝑠 ∈ ℝ ↦ (𝐷𝑠)) ↾ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))) = (𝑠 ∈ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))) ↦ (𝐷𝑠)))
172171oveq1d 7432 . . . . 5 ((𝜑𝑖 ∈ (0..^𝑀)) → (((𝑠 ∈ ℝ ↦ (𝐷𝑠)) ↾ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))) lim (𝑄𝑖)) = ((𝑠 ∈ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))) ↦ (𝐷𝑠)) lim (𝑄𝑖)))
173170, 172eleqtrd 2827 . . . 4 ((𝜑𝑖 ∈ (0..^𝑀)) → (𝐷‘(𝑄𝑖)) ∈ ((𝑠 ∈ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))) ↦ (𝐷𝑠)) lim (𝑄𝑖)))
174146, 147, 148, 154, 142, 162, 173mullimc 45084 . . 3 ((𝜑𝑖 ∈ (0..^𝑀)) → (𝑅 · (𝐷‘(𝑄𝑖))) ∈ ((𝑠 ∈ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))) ↦ ((𝐹‘(𝑋 + 𝑠)) · (𝐷𝑠))) lim (𝑄𝑖)))
17527reseq1i 5980 . . . . 5 (𝐺 ↾ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))) = ((𝑠 ∈ (𝐴[,]𝐵) ↦ ((𝐹‘(𝑋 + 𝑠)) · (𝐷𝑠))) ↾ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))))
176175, 41eqtr2id 2778 . . . 4 ((𝜑𝑖 ∈ (0..^𝑀)) → (𝑠 ∈ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))) ↦ ((𝐹‘(𝑋 + 𝑠)) · (𝐷𝑠))) = (𝐺 ↾ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))))
177176oveq1d 7432 . . 3 ((𝜑𝑖 ∈ (0..^𝑀)) → ((𝑠 ∈ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))) ↦ ((𝐹‘(𝑋 + 𝑠)) · (𝐷𝑠))) lim (𝑄𝑖)) = ((𝐺 ↾ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))) lim (𝑄𝑖)))
178174, 177eleqtrd 2827 . 2 ((𝜑𝑖 ∈ (0..^𝑀)) → (𝑅 · (𝐷‘(𝑄𝑖))) ∈ ((𝐺 ↾ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))) lim (𝑄𝑖)))
17963, 96ltned 11380 . . . . 5 (((𝜑𝑖 ∈ (0..^𝑀)) ∧ 𝑠 ∈ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))) → 𝑠 ≠ (𝑄‘(𝑖 + 1)))
180 fourierdlem84.l . . . . . 6 ((𝜑𝑖 ∈ (0..^𝑀)) → 𝐿 ∈ ((𝐹 ↾ ((𝑉𝑖)(,)(𝑉‘(𝑖 + 1)))) lim (𝑉‘(𝑖 + 1))))
181111eqcomd 2731 . . . . . . 7 ((𝜑𝑖 ∈ (0..^𝑀)) → (𝑉‘(𝑖 + 1)) = (𝑋 + (𝑄‘(𝑖 + 1))))
182181oveq2d 7433 . . . . . 6 ((𝜑𝑖 ∈ (0..^𝑀)) → ((𝐹 ↾ ((𝑉𝑖)(,)(𝑉‘(𝑖 + 1)))) lim (𝑉‘(𝑖 + 1))) = ((𝐹 ↾ ((𝑉𝑖)(,)(𝑉‘(𝑖 + 1)))) lim (𝑋 + (𝑄‘(𝑖 + 1)))))
183180, 182eleqtrd 2827 . . . . 5 ((𝜑𝑖 ∈ (0..^𝑀)) → 𝐿 ∈ ((𝐹 ↾ ((𝑉𝑖)(,)(𝑉‘(𝑖 + 1)))) lim (𝑋 + (𝑄‘(𝑖 + 1)))))
18486recnd 11272 . . . . 5 ((𝜑𝑖 ∈ (0..^𝑀)) → (𝑄‘(𝑖 + 1)) ∈ ℂ)
185155, 73, 136, 146, 114, 157, 179, 183, 184fourierdlem53 45627 . . . 4 ((𝜑𝑖 ∈ (0..^𝑀)) → 𝐿 ∈ ((𝑠 ∈ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))) ↦ (𝐹‘(𝑋 + 𝑠))) lim (𝑄‘(𝑖 + 1))))
186 limcresi 25845 . . . . . 6 ((𝑠 ∈ ℝ ↦ (𝐷𝑠)) lim (𝑄‘(𝑖 + 1))) ⊆ (((𝑠 ∈ ℝ ↦ (𝐷𝑠)) ↾ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))) lim (𝑄‘(𝑖 + 1)))
187165, 86cnlimci 25849 . . . . . . 7 ((𝜑𝑖 ∈ (0..^𝑀)) → (𝐷‘(𝑄‘(𝑖 + 1))) ∈ (𝐷 lim (𝑄‘(𝑖 + 1))))
188131oveq1d 7432 . . . . . . . 8 (𝜑 → (𝐷 lim (𝑄‘(𝑖 + 1))) = ((𝑠 ∈ ℝ ↦ (𝐷𝑠)) lim (𝑄‘(𝑖 + 1))))
189188adantr 479 . . . . . . 7 ((𝜑𝑖 ∈ (0..^𝑀)) → (𝐷 lim (𝑄‘(𝑖 + 1))) = ((𝑠 ∈ ℝ ↦ (𝐷𝑠)) lim (𝑄‘(𝑖 + 1))))
190187, 189eleqtrd 2827 . . . . . 6 ((𝜑𝑖 ∈ (0..^𝑀)) → (𝐷‘(𝑄‘(𝑖 + 1))) ∈ ((𝑠 ∈ ℝ ↦ (𝐷𝑠)) lim (𝑄‘(𝑖 + 1))))
191186, 190sselid 3975 . . . . 5 ((𝜑𝑖 ∈ (0..^𝑀)) → (𝐷‘(𝑄‘(𝑖 + 1))) ∈ (((𝑠 ∈ ℝ ↦ (𝐷𝑠)) ↾ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))) lim (𝑄‘(𝑖 + 1))))
192171oveq1d 7432 . . . . 5 ((𝜑𝑖 ∈ (0..^𝑀)) → (((𝑠 ∈ ℝ ↦ (𝐷𝑠)) ↾ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))) lim (𝑄‘(𝑖 + 1))) = ((𝑠 ∈ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))) ↦ (𝐷𝑠)) lim (𝑄‘(𝑖 + 1))))
193191, 192eleqtrd 2827 . . . 4 ((𝜑𝑖 ∈ (0..^𝑀)) → (𝐷‘(𝑄‘(𝑖 + 1))) ∈ ((𝑠 ∈ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))) ↦ (𝐷𝑠)) lim (𝑄‘(𝑖 + 1))))
194146, 147, 148, 154, 142, 185, 193mullimc 45084 . . 3 ((𝜑𝑖 ∈ (0..^𝑀)) → (𝐿 · (𝐷‘(𝑄‘(𝑖 + 1)))) ∈ ((𝑠 ∈ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))) ↦ ((𝐹‘(𝑋 + 𝑠)) · (𝐷𝑠))) lim (𝑄‘(𝑖 + 1))))
195176oveq1d 7432 . . 3 ((𝜑𝑖 ∈ (0..^𝑀)) → ((𝑠 ∈ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))) ↦ ((𝐹‘(𝑋 + 𝑠)) · (𝐷𝑠))) lim (𝑄‘(𝑖 + 1))) = ((𝐺 ↾ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))) lim (𝑄‘(𝑖 + 1))))
196194, 195eleqtrd 2827 . 2 ((𝜑𝑖 ∈ (0..^𝑀)) → (𝐿 · (𝐷‘(𝑄‘(𝑖 + 1)))) ∈ ((𝐺 ↾ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))) lim (𝑄‘(𝑖 + 1))))
1971, 2, 9, 28, 145, 178, 196fourierdlem69 45643 1 (𝜑𝐺 ∈ 𝐿1)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 394   = wceq 1533  wcel 2098  wral 3051  {crab 3419  wss 3945   class class class wbr 5148  cmpt 5231  cres 5679  wf 6543  cfv 6547  (class class class)co 7417  m cmap 8843  cc 11136  cr 11137  0cc0 11138  1c1 11139   + caddc 11141   · cmul 11143  *cxr 11277   < clt 11278  cmin 11474  cn 12242  (,)cioo 13356  [,]cicc 13359  ...cfz 13516  ..^cfzo 13659  cnccncf 24827  𝐿1cibl 25577   lim climc 25822
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2166  ax-ext 2696  ax-rep 5285  ax-sep 5299  ax-nul 5306  ax-pow 5364  ax-pr 5428  ax-un 7739  ax-inf2 9664  ax-cc 10458  ax-cnex 11194  ax-resscn 11195  ax-1cn 11196  ax-icn 11197  ax-addcl 11198  ax-addrcl 11199  ax-mulcl 11200  ax-mulrcl 11201  ax-mulcom 11202  ax-addass 11203  ax-mulass 11204  ax-distr 11205  ax-i2m1 11206  ax-1ne0 11207  ax-1rid 11208  ax-rnegex 11209  ax-rrecex 11210  ax-cnre 11211  ax-pre-lttri 11212  ax-pre-lttrn 11213  ax-pre-ltadd 11214  ax-pre-mulgt0 11215  ax-pre-sup 11216  ax-addf 11217
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 846  df-3or 1085  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2528  df-eu 2557  df-clab 2703  df-cleq 2717  df-clel 2802  df-nfc 2877  df-ne 2931  df-nel 3037  df-ral 3052  df-rex 3061  df-rmo 3364  df-reu 3365  df-rab 3420  df-v 3465  df-sbc 3775  df-csb 3891  df-dif 3948  df-un 3950  df-in 3952  df-ss 3962  df-pss 3965  df-symdif 4242  df-nul 4324  df-if 4530  df-pw 4605  df-sn 4630  df-pr 4632  df-tp 4634  df-op 4636  df-uni 4909  df-int 4950  df-iun 4998  df-iin 4999  df-disj 5114  df-br 5149  df-opab 5211  df-mpt 5232  df-tr 5266  df-id 5575  df-eprel 5581  df-po 5589  df-so 5590  df-fr 5632  df-se 5633  df-we 5634  df-xp 5683  df-rel 5684  df-cnv 5685  df-co 5686  df-dm 5687  df-rn 5688  df-res 5689  df-ima 5690  df-pred 6305  df-ord 6372  df-on 6373  df-lim 6374  df-suc 6375  df-iota 6499  df-fun 6549  df-fn 6550  df-f 6551  df-f1 6552  df-fo 6553  df-f1o 6554  df-fv 6555  df-isom 6556  df-riota 7373  df-ov 7420  df-oprab 7421  df-mpo 7422  df-of 7683  df-ofr 7684  df-om 7870  df-1st 7992  df-2nd 7993  df-supp 8164  df-frecs 8285  df-wrecs 8316  df-recs 8390  df-rdg 8429  df-1o 8485  df-2o 8486  df-oadd 8489  df-omul 8490  df-er 8723  df-map 8845  df-pm 8846  df-ixp 8915  df-en 8963  df-dom 8964  df-sdom 8965  df-fin 8966  df-fsupp 9386  df-fi 9434  df-sup 9465  df-inf 9466  df-oi 9533  df-dju 9924  df-card 9962  df-acn 9965  df-pnf 11280  df-mnf 11281  df-xr 11282  df-ltxr 11283  df-le 11284  df-sub 11476  df-neg 11477  df-div 11902  df-nn 12243  df-2 12305  df-3 12306  df-4 12307  df-5 12308  df-6 12309  df-7 12310  df-8 12311  df-9 12312  df-n0 12503  df-z 12589  df-dec 12708  df-uz 12853  df-q 12963  df-rp 13007  df-xneg 13124  df-xadd 13125  df-xmul 13126  df-ioo 13360  df-ioc 13361  df-ico 13362  df-icc 13363  df-fz 13517  df-fzo 13660  df-fl 13790  df-mod 13868  df-seq 14000  df-exp 14060  df-hash 14323  df-cj 15079  df-re 15080  df-im 15081  df-sqrt 15215  df-abs 15216  df-limsup 15448  df-clim 15465  df-rlim 15466  df-sum 15666  df-struct 17116  df-sets 17133  df-slot 17151  df-ndx 17163  df-base 17181  df-ress 17210  df-plusg 17246  df-mulr 17247  df-starv 17248  df-sca 17249  df-vsca 17250  df-ip 17251  df-tset 17252  df-ple 17253  df-ds 17255  df-unif 17256  df-hom 17257  df-cco 17258  df-rest 17404  df-topn 17405  df-0g 17423  df-gsum 17424  df-topgen 17425  df-pt 17426  df-prds 17429  df-xrs 17484  df-qtop 17489  df-imas 17490  df-xps 17492  df-mre 17566  df-mrc 17567  df-acs 17569  df-mgm 18600  df-sgrp 18679  df-mnd 18695  df-submnd 18741  df-mulg 19029  df-cntz 19273  df-cmn 19742  df-psmet 21276  df-xmet 21277  df-met 21278  df-bl 21279  df-mopn 21280  df-cnfld 21285  df-top 22827  df-topon 22844  df-topsp 22866  df-bases 22880  df-cld 22954  df-ntr 22955  df-cls 22956  df-cn 23162  df-cnp 23163  df-cmp 23322  df-tx 23497  df-hmeo 23690  df-xms 24257  df-ms 24258  df-tms 24259  df-cncf 24829  df-ovol 25424  df-vol 25425  df-mbf 25579  df-itg1 25580  df-itg2 25581  df-ibl 25582  df-itg 25583  df-0p 25630  df-limc 25826
This theorem is referenced by:  fourierdlem103  45677  fourierdlem104  45678  fourierdlem112  45686
  Copyright terms: Public domain W3C validator
OSZAR »