Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  limcresiooub Structured version   Visualization version   GIF version

Theorem limcresiooub 45030
Description: The left limit doesn't change if the function is restricted to a smaller open interval. (Contributed by Glauco Siliprandi, 11-Dec-2019.)
Hypotheses
Ref Expression
limcresiooub.f (𝜑𝐹:𝐴⟶ℂ)
limcresiooub.b (𝜑𝐵 ∈ ℝ*)
limcresiooub.c (𝜑𝐶 ∈ ℝ)
limcresiooub.bltc (𝜑𝐵 < 𝐶)
limcresiooub.bcss (𝜑 → (𝐵(,)𝐶) ⊆ 𝐴)
limcresiooub.d (𝜑𝐷 ∈ ℝ*)
limcresiooub.cled (𝜑𝐷𝐵)
Assertion
Ref Expression
limcresiooub (𝜑 → ((𝐹 ↾ (𝐵(,)𝐶)) lim 𝐶) = ((𝐹 ↾ (𝐷(,)𝐶)) lim 𝐶))

Proof of Theorem limcresiooub
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 limcresiooub.d . . . . . 6 (𝜑𝐷 ∈ ℝ*)
2 limcresiooub.cled . . . . . 6 (𝜑𝐷𝐵)
3 iooss1 13392 . . . . . 6 ((𝐷 ∈ ℝ*𝐷𝐵) → (𝐵(,)𝐶) ⊆ (𝐷(,)𝐶))
41, 2, 3syl2anc 583 . . . . 5 (𝜑 → (𝐵(,)𝐶) ⊆ (𝐷(,)𝐶))
54resabs1d 6016 . . . 4 (𝜑 → ((𝐹 ↾ (𝐷(,)𝐶)) ↾ (𝐵(,)𝐶)) = (𝐹 ↾ (𝐵(,)𝐶)))
65eqcomd 2734 . . 3 (𝜑 → (𝐹 ↾ (𝐵(,)𝐶)) = ((𝐹 ↾ (𝐷(,)𝐶)) ↾ (𝐵(,)𝐶)))
76oveq1d 7435 . 2 (𝜑 → ((𝐹 ↾ (𝐵(,)𝐶)) lim 𝐶) = (((𝐹 ↾ (𝐷(,)𝐶)) ↾ (𝐵(,)𝐶)) lim 𝐶))
8 limcresiooub.f . . . 4 (𝜑𝐹:𝐴⟶ℂ)
9 fresin 6766 . . . 4 (𝐹:𝐴⟶ℂ → (𝐹 ↾ (𝐷(,)𝐶)):(𝐴 ∩ (𝐷(,)𝐶))⟶ℂ)
108, 9syl 17 . . 3 (𝜑 → (𝐹 ↾ (𝐷(,)𝐶)):(𝐴 ∩ (𝐷(,)𝐶))⟶ℂ)
11 limcresiooub.bcss . . . 4 (𝜑 → (𝐵(,)𝐶) ⊆ 𝐴)
1211, 4ssind 4233 . . 3 (𝜑 → (𝐵(,)𝐶) ⊆ (𝐴 ∩ (𝐷(,)𝐶)))
13 inss2 4230 . . . . 5 (𝐴 ∩ (𝐷(,)𝐶)) ⊆ (𝐷(,)𝐶)
14 ioosscn 13419 . . . . 5 (𝐷(,)𝐶) ⊆ ℂ
1513, 14sstri 3989 . . . 4 (𝐴 ∩ (𝐷(,)𝐶)) ⊆ ℂ
1615a1i 11 . . 3 (𝜑 → (𝐴 ∩ (𝐷(,)𝐶)) ⊆ ℂ)
17 eqid 2728 . . 3 (TopOpen‘ℂfld) = (TopOpen‘ℂfld)
18 eqid 2728 . . 3 ((TopOpen‘ℂfld) ↾t ((𝐴 ∩ (𝐷(,)𝐶)) ∪ {𝐶})) = ((TopOpen‘ℂfld) ↾t ((𝐴 ∩ (𝐷(,)𝐶)) ∪ {𝐶}))
19 limcresiooub.b . . . . 5 (𝜑𝐵 ∈ ℝ*)
20 limcresiooub.c . . . . . 6 (𝜑𝐶 ∈ ℝ)
2120rexrd 11295 . . . . 5 (𝜑𝐶 ∈ ℝ*)
22 limcresiooub.bltc . . . . 5 (𝜑𝐵 < 𝐶)
23 ubioc1 13410 . . . . 5 ((𝐵 ∈ ℝ*𝐶 ∈ ℝ*𝐵 < 𝐶) → 𝐶 ∈ (𝐵(,]𝐶))
2419, 21, 22, 23syl3anc 1369 . . . 4 (𝜑𝐶 ∈ (𝐵(,]𝐶))
25 ioounsn 13487 . . . . . . 7 ((𝐵 ∈ ℝ*𝐶 ∈ ℝ*𝐵 < 𝐶) → ((𝐵(,)𝐶) ∪ {𝐶}) = (𝐵(,]𝐶))
2619, 21, 22, 25syl3anc 1369 . . . . . 6 (𝜑 → ((𝐵(,)𝐶) ∪ {𝐶}) = (𝐵(,]𝐶))
2726fveq2d 6901 . . . . 5 (𝜑 → ((int‘((TopOpen‘ℂfld) ↾t ((𝐴 ∩ (𝐷(,)𝐶)) ∪ {𝐶})))‘((𝐵(,)𝐶) ∪ {𝐶})) = ((int‘((TopOpen‘ℂfld) ↾t ((𝐴 ∩ (𝐷(,)𝐶)) ∪ {𝐶})))‘(𝐵(,]𝐶)))
2817cnfldtop 24713 . . . . . . . 8 (TopOpen‘ℂfld) ∈ Top
29 ovex 7453 . . . . . . . . . 10 (𝐷(,)𝐶) ∈ V
3029inex2 5318 . . . . . . . . 9 (𝐴 ∩ (𝐷(,)𝐶)) ∈ V
31 snex 5433 . . . . . . . . 9 {𝐶} ∈ V
3230, 31unex 7748 . . . . . . . 8 ((𝐴 ∩ (𝐷(,)𝐶)) ∪ {𝐶}) ∈ V
33 resttop 23077 . . . . . . . 8 (((TopOpen‘ℂfld) ∈ Top ∧ ((𝐴 ∩ (𝐷(,)𝐶)) ∪ {𝐶}) ∈ V) → ((TopOpen‘ℂfld) ↾t ((𝐴 ∩ (𝐷(,)𝐶)) ∪ {𝐶})) ∈ Top)
3428, 32, 33mp2an 691 . . . . . . 7 ((TopOpen‘ℂfld) ↾t ((𝐴 ∩ (𝐷(,)𝐶)) ∪ {𝐶})) ∈ Top
3534a1i 11 . . . . . 6 (𝜑 → ((TopOpen‘ℂfld) ↾t ((𝐴 ∩ (𝐷(,)𝐶)) ∪ {𝐶})) ∈ Top)
36 pnfxr 11299 . . . . . . . . . . . . . 14 +∞ ∈ ℝ*
3736a1i 11 . . . . . . . . . . . . 13 (𝜑 → +∞ ∈ ℝ*)
3819xrleidd 13164 . . . . . . . . . . . . 13 (𝜑𝐵𝐵)
3920ltpnfd 13134 . . . . . . . . . . . . 13 (𝜑𝐶 < +∞)
40 iocssioo 13449 . . . . . . . . . . . . 13 (((𝐵 ∈ ℝ* ∧ +∞ ∈ ℝ*) ∧ (𝐵𝐵𝐶 < +∞)) → (𝐵(,]𝐶) ⊆ (𝐵(,)+∞))
4119, 37, 38, 39, 40syl22anc 838 . . . . . . . . . . . 12 (𝜑 → (𝐵(,]𝐶) ⊆ (𝐵(,)+∞))
42 simpr 484 . . . . . . . . . . . . . . . . 17 ((𝜑𝑥 = 𝐶) → 𝑥 = 𝐶)
43 snidg 4663 . . . . . . . . . . . . . . . . . . 19 (𝐶 ∈ ℝ → 𝐶 ∈ {𝐶})
44 elun2 4177 . . . . . . . . . . . . . . . . . . 19 (𝐶 ∈ {𝐶} → 𝐶 ∈ ((𝐴 ∩ (𝐷(,)𝐶)) ∪ {𝐶}))
4520, 43, 443syl 18 . . . . . . . . . . . . . . . . . 18 (𝜑𝐶 ∈ ((𝐴 ∩ (𝐷(,)𝐶)) ∪ {𝐶}))
4645adantr 480 . . . . . . . . . . . . . . . . 17 ((𝜑𝑥 = 𝐶) → 𝐶 ∈ ((𝐴 ∩ (𝐷(,)𝐶)) ∪ {𝐶}))
4742, 46eqeltrd 2829 . . . . . . . . . . . . . . . 16 ((𝜑𝑥 = 𝐶) → 𝑥 ∈ ((𝐴 ∩ (𝐷(,)𝐶)) ∪ {𝐶}))
4847adantlr 714 . . . . . . . . . . . . . . 15 (((𝜑𝑥 ∈ (𝐵(,]𝐶)) ∧ 𝑥 = 𝐶) → 𝑥 ∈ ((𝐴 ∩ (𝐷(,)𝐶)) ∪ {𝐶}))
49 simpll 766 . . . . . . . . . . . . . . . 16 (((𝜑𝑥 ∈ (𝐵(,]𝐶)) ∧ ¬ 𝑥 = 𝐶) → 𝜑)
5019adantr 480 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑥 ∈ (𝐵(,]𝐶)) → 𝐵 ∈ ℝ*)
5150adantr 480 . . . . . . . . . . . . . . . . 17 (((𝜑𝑥 ∈ (𝐵(,]𝐶)) ∧ ¬ 𝑥 = 𝐶) → 𝐵 ∈ ℝ*)
5221adantr 480 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑥 ∈ (𝐵(,]𝐶)) → 𝐶 ∈ ℝ*)
5352adantr 480 . . . . . . . . . . . . . . . . 17 (((𝜑𝑥 ∈ (𝐵(,]𝐶)) ∧ ¬ 𝑥 = 𝐶) → 𝐶 ∈ ℝ*)
54 iocssre 13437 . . . . . . . . . . . . . . . . . . . 20 ((𝐵 ∈ ℝ*𝐶 ∈ ℝ) → (𝐵(,]𝐶) ⊆ ℝ)
5519, 20, 54syl2anc 583 . . . . . . . . . . . . . . . . . . 19 (𝜑 → (𝐵(,]𝐶) ⊆ ℝ)
5655sselda 3980 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑥 ∈ (𝐵(,]𝐶)) → 𝑥 ∈ ℝ)
5756adantr 480 . . . . . . . . . . . . . . . . 17 (((𝜑𝑥 ∈ (𝐵(,]𝐶)) ∧ ¬ 𝑥 = 𝐶) → 𝑥 ∈ ℝ)
58 simpr 484 . . . . . . . . . . . . . . . . . . 19 ((𝜑𝑥 ∈ (𝐵(,]𝐶)) → 𝑥 ∈ (𝐵(,]𝐶))
59 iocgtlb 44887 . . . . . . . . . . . . . . . . . . 19 ((𝐵 ∈ ℝ*𝐶 ∈ ℝ*𝑥 ∈ (𝐵(,]𝐶)) → 𝐵 < 𝑥)
6050, 52, 58, 59syl3anc 1369 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑥 ∈ (𝐵(,]𝐶)) → 𝐵 < 𝑥)
6160adantr 480 . . . . . . . . . . . . . . . . 17 (((𝜑𝑥 ∈ (𝐵(,]𝐶)) ∧ ¬ 𝑥 = 𝐶) → 𝐵 < 𝑥)
6220ad2antrr 725 . . . . . . . . . . . . . . . . . 18 (((𝜑𝑥 ∈ (𝐵(,]𝐶)) ∧ ¬ 𝑥 = 𝐶) → 𝐶 ∈ ℝ)
63 iocleub 44888 . . . . . . . . . . . . . . . . . . . 20 ((𝐵 ∈ ℝ*𝐶 ∈ ℝ*𝑥 ∈ (𝐵(,]𝐶)) → 𝑥𝐶)
6450, 52, 58, 63syl3anc 1369 . . . . . . . . . . . . . . . . . . 19 ((𝜑𝑥 ∈ (𝐵(,]𝐶)) → 𝑥𝐶)
6564adantr 480 . . . . . . . . . . . . . . . . . 18 (((𝜑𝑥 ∈ (𝐵(,]𝐶)) ∧ ¬ 𝑥 = 𝐶) → 𝑥𝐶)
66 neqne 2945 . . . . . . . . . . . . . . . . . . . 20 𝑥 = 𝐶𝑥𝐶)
6766adantl 481 . . . . . . . . . . . . . . . . . . 19 (((𝜑𝑥 ∈ (𝐵(,]𝐶)) ∧ ¬ 𝑥 = 𝐶) → 𝑥𝐶)
6867necomd 2993 . . . . . . . . . . . . . . . . . 18 (((𝜑𝑥 ∈ (𝐵(,]𝐶)) ∧ ¬ 𝑥 = 𝐶) → 𝐶𝑥)
6957, 62, 65, 68leneltd 11399 . . . . . . . . . . . . . . . . 17 (((𝜑𝑥 ∈ (𝐵(,]𝐶)) ∧ ¬ 𝑥 = 𝐶) → 𝑥 < 𝐶)
7051, 53, 57, 61, 69eliood 44883 . . . . . . . . . . . . . . . 16 (((𝜑𝑥 ∈ (𝐵(,]𝐶)) ∧ ¬ 𝑥 = 𝐶) → 𝑥 ∈ (𝐵(,)𝐶))
7112sselda 3980 . . . . . . . . . . . . . . . . 17 ((𝜑𝑥 ∈ (𝐵(,)𝐶)) → 𝑥 ∈ (𝐴 ∩ (𝐷(,)𝐶)))
72 elun1 4176 . . . . . . . . . . . . . . . . 17 (𝑥 ∈ (𝐴 ∩ (𝐷(,)𝐶)) → 𝑥 ∈ ((𝐴 ∩ (𝐷(,)𝐶)) ∪ {𝐶}))
7371, 72syl 17 . . . . . . . . . . . . . . . 16 ((𝜑𝑥 ∈ (𝐵(,)𝐶)) → 𝑥 ∈ ((𝐴 ∩ (𝐷(,)𝐶)) ∪ {𝐶}))
7449, 70, 73syl2anc 583 . . . . . . . . . . . . . . 15 (((𝜑𝑥 ∈ (𝐵(,]𝐶)) ∧ ¬ 𝑥 = 𝐶) → 𝑥 ∈ ((𝐴 ∩ (𝐷(,)𝐶)) ∪ {𝐶}))
7548, 74pm2.61dan 812 . . . . . . . . . . . . . 14 ((𝜑𝑥 ∈ (𝐵(,]𝐶)) → 𝑥 ∈ ((𝐴 ∩ (𝐷(,)𝐶)) ∪ {𝐶}))
7675ralrimiva 3143 . . . . . . . . . . . . 13 (𝜑 → ∀𝑥 ∈ (𝐵(,]𝐶)𝑥 ∈ ((𝐴 ∩ (𝐷(,)𝐶)) ∪ {𝐶}))
77 dfss3 3968 . . . . . . . . . . . . 13 ((𝐵(,]𝐶) ⊆ ((𝐴 ∩ (𝐷(,)𝐶)) ∪ {𝐶}) ↔ ∀𝑥 ∈ (𝐵(,]𝐶)𝑥 ∈ ((𝐴 ∩ (𝐷(,)𝐶)) ∪ {𝐶}))
7876, 77sylibr 233 . . . . . . . . . . . 12 (𝜑 → (𝐵(,]𝐶) ⊆ ((𝐴 ∩ (𝐷(,)𝐶)) ∪ {𝐶}))
7941, 78ssind 4233 . . . . . . . . . . 11 (𝜑 → (𝐵(,]𝐶) ⊆ ((𝐵(,)+∞) ∩ ((𝐴 ∩ (𝐷(,)𝐶)) ∪ {𝐶})))
8079sseld 3979 . . . . . . . . . 10 (𝜑 → (𝑥 ∈ (𝐵(,]𝐶) → 𝑥 ∈ ((𝐵(,)+∞) ∩ ((𝐴 ∩ (𝐷(,)𝐶)) ∪ {𝐶}))))
8124adantr 480 . . . . . . . . . . . . . 14 ((𝜑𝑥 = 𝐶) → 𝐶 ∈ (𝐵(,]𝐶))
8242, 81eqeltrd 2829 . . . . . . . . . . . . 13 ((𝜑𝑥 = 𝐶) → 𝑥 ∈ (𝐵(,]𝐶))
8382adantlr 714 . . . . . . . . . . . 12 (((𝜑𝑥 ∈ ((𝐵(,)+∞) ∩ ((𝐴 ∩ (𝐷(,)𝐶)) ∪ {𝐶}))) ∧ 𝑥 = 𝐶) → 𝑥 ∈ (𝐵(,]𝐶))
84 ioossioc 44877 . . . . . . . . . . . . 13 (𝐵(,)𝐶) ⊆ (𝐵(,]𝐶)
8519ad2antrr 725 . . . . . . . . . . . . . 14 (((𝜑𝑥 ∈ ((𝐵(,)+∞) ∩ ((𝐴 ∩ (𝐷(,)𝐶)) ∪ {𝐶}))) ∧ ¬ 𝑥 = 𝐶) → 𝐵 ∈ ℝ*)
8621ad2antrr 725 . . . . . . . . . . . . . 14 (((𝜑𝑥 ∈ ((𝐵(,)+∞) ∩ ((𝐴 ∩ (𝐷(,)𝐶)) ∪ {𝐶}))) ∧ ¬ 𝑥 = 𝐶) → 𝐶 ∈ ℝ*)
87 elinel1 4195 . . . . . . . . . . . . . . . 16 (𝑥 ∈ ((𝐵(,)+∞) ∩ ((𝐴 ∩ (𝐷(,)𝐶)) ∪ {𝐶})) → 𝑥 ∈ (𝐵(,)+∞))
8887elioored 44934 . . . . . . . . . . . . . . 15 (𝑥 ∈ ((𝐵(,)+∞) ∩ ((𝐴 ∩ (𝐷(,)𝐶)) ∪ {𝐶})) → 𝑥 ∈ ℝ)
8988ad2antlr 726 . . . . . . . . . . . . . 14 (((𝜑𝑥 ∈ ((𝐵(,)+∞) ∩ ((𝐴 ∩ (𝐷(,)𝐶)) ∪ {𝐶}))) ∧ ¬ 𝑥 = 𝐶) → 𝑥 ∈ ℝ)
9036a1i 11 . . . . . . . . . . . . . . 15 (((𝜑𝑥 ∈ ((𝐵(,)+∞) ∩ ((𝐴 ∩ (𝐷(,)𝐶)) ∪ {𝐶}))) ∧ ¬ 𝑥 = 𝐶) → +∞ ∈ ℝ*)
9187ad2antlr 726 . . . . . . . . . . . . . . 15 (((𝜑𝑥 ∈ ((𝐵(,)+∞) ∩ ((𝐴 ∩ (𝐷(,)𝐶)) ∪ {𝐶}))) ∧ ¬ 𝑥 = 𝐶) → 𝑥 ∈ (𝐵(,)+∞))
92 ioogtlb 44880 . . . . . . . . . . . . . . 15 ((𝐵 ∈ ℝ* ∧ +∞ ∈ ℝ*𝑥 ∈ (𝐵(,)+∞)) → 𝐵 < 𝑥)
9385, 90, 91, 92syl3anc 1369 . . . . . . . . . . . . . 14 (((𝜑𝑥 ∈ ((𝐵(,)+∞) ∩ ((𝐴 ∩ (𝐷(,)𝐶)) ∪ {𝐶}))) ∧ ¬ 𝑥 = 𝐶) → 𝐵 < 𝑥)
941ad2antrr 725 . . . . . . . . . . . . . . 15 (((𝜑𝑥 ∈ ((𝐵(,)+∞) ∩ ((𝐴 ∩ (𝐷(,)𝐶)) ∪ {𝐶}))) ∧ ¬ 𝑥 = 𝐶) → 𝐷 ∈ ℝ*)
95 elinel2 4196 . . . . . . . . . . . . . . . . . 18 (𝑥 ∈ ((𝐵(,)+∞) ∩ ((𝐴 ∩ (𝐷(,)𝐶)) ∪ {𝐶})) → 𝑥 ∈ ((𝐴 ∩ (𝐷(,)𝐶)) ∪ {𝐶}))
96 id 22 . . . . . . . . . . . . . . . . . . 19 𝑥 = 𝐶 → ¬ 𝑥 = 𝐶)
97 velsn 4645 . . . . . . . . . . . . . . . . . . 19 (𝑥 ∈ {𝐶} ↔ 𝑥 = 𝐶)
9896, 97sylnibr 329 . . . . . . . . . . . . . . . . . 18 𝑥 = 𝐶 → ¬ 𝑥 ∈ {𝐶})
99 elunnel2 4149 . . . . . . . . . . . . . . . . . 18 ((𝑥 ∈ ((𝐴 ∩ (𝐷(,)𝐶)) ∪ {𝐶}) ∧ ¬ 𝑥 ∈ {𝐶}) → 𝑥 ∈ (𝐴 ∩ (𝐷(,)𝐶)))
10095, 98, 99syl2an 595 . . . . . . . . . . . . . . . . 17 ((𝑥 ∈ ((𝐵(,)+∞) ∩ ((𝐴 ∩ (𝐷(,)𝐶)) ∪ {𝐶})) ∧ ¬ 𝑥 = 𝐶) → 𝑥 ∈ (𝐴 ∩ (𝐷(,)𝐶)))
10113, 100sselid 3978 . . . . . . . . . . . . . . . 16 ((𝑥 ∈ ((𝐵(,)+∞) ∩ ((𝐴 ∩ (𝐷(,)𝐶)) ∪ {𝐶})) ∧ ¬ 𝑥 = 𝐶) → 𝑥 ∈ (𝐷(,)𝐶))
102101adantll 713 . . . . . . . . . . . . . . 15 (((𝜑𝑥 ∈ ((𝐵(,)+∞) ∩ ((𝐴 ∩ (𝐷(,)𝐶)) ∪ {𝐶}))) ∧ ¬ 𝑥 = 𝐶) → 𝑥 ∈ (𝐷(,)𝐶))
103 iooltub 44895 . . . . . . . . . . . . . . 15 ((𝐷 ∈ ℝ*𝐶 ∈ ℝ*𝑥 ∈ (𝐷(,)𝐶)) → 𝑥 < 𝐶)
10494, 86, 102, 103syl3anc 1369 . . . . . . . . . . . . . 14 (((𝜑𝑥 ∈ ((𝐵(,)+∞) ∩ ((𝐴 ∩ (𝐷(,)𝐶)) ∪ {𝐶}))) ∧ ¬ 𝑥 = 𝐶) → 𝑥 < 𝐶)
10585, 86, 89, 93, 104eliood 44883 . . . . . . . . . . . . 13 (((𝜑𝑥 ∈ ((𝐵(,)+∞) ∩ ((𝐴 ∩ (𝐷(,)𝐶)) ∪ {𝐶}))) ∧ ¬ 𝑥 = 𝐶) → 𝑥 ∈ (𝐵(,)𝐶))
10684, 105sselid 3978 . . . . . . . . . . . 12 (((𝜑𝑥 ∈ ((𝐵(,)+∞) ∩ ((𝐴 ∩ (𝐷(,)𝐶)) ∪ {𝐶}))) ∧ ¬ 𝑥 = 𝐶) → 𝑥 ∈ (𝐵(,]𝐶))
10783, 106pm2.61dan 812 . . . . . . . . . . 11 ((𝜑𝑥 ∈ ((𝐵(,)+∞) ∩ ((𝐴 ∩ (𝐷(,)𝐶)) ∪ {𝐶}))) → 𝑥 ∈ (𝐵(,]𝐶))
108107ex 412 . . . . . . . . . 10 (𝜑 → (𝑥 ∈ ((𝐵(,)+∞) ∩ ((𝐴 ∩ (𝐷(,)𝐶)) ∪ {𝐶})) → 𝑥 ∈ (𝐵(,]𝐶)))
10980, 108impbid 211 . . . . . . . . 9 (𝜑 → (𝑥 ∈ (𝐵(,]𝐶) ↔ 𝑥 ∈ ((𝐵(,)+∞) ∩ ((𝐴 ∩ (𝐷(,)𝐶)) ∪ {𝐶}))))
110109eqrdv 2726 . . . . . . . 8 (𝜑 → (𝐵(,]𝐶) = ((𝐵(,)+∞) ∩ ((𝐴 ∩ (𝐷(,)𝐶)) ∪ {𝐶})))
111 retop 24691 . . . . . . . . . 10 (topGen‘ran (,)) ∈ Top
112111a1i 11 . . . . . . . . 9 (𝜑 → (topGen‘ran (,)) ∈ Top)
11332a1i 11 . . . . . . . . 9 (𝜑 → ((𝐴 ∩ (𝐷(,)𝐶)) ∪ {𝐶}) ∈ V)
114 iooretop 24695 . . . . . . . . . 10 (𝐵(,)+∞) ∈ (topGen‘ran (,))
115114a1i 11 . . . . . . . . 9 (𝜑 → (𝐵(,)+∞) ∈ (topGen‘ran (,)))
116 elrestr 17410 . . . . . . . . 9 (((topGen‘ran (,)) ∈ Top ∧ ((𝐴 ∩ (𝐷(,)𝐶)) ∪ {𝐶}) ∈ V ∧ (𝐵(,)+∞) ∈ (topGen‘ran (,))) → ((𝐵(,)+∞) ∩ ((𝐴 ∩ (𝐷(,)𝐶)) ∪ {𝐶})) ∈ ((topGen‘ran (,)) ↾t ((𝐴 ∩ (𝐷(,)𝐶)) ∪ {𝐶})))
117112, 113, 115, 116syl3anc 1369 . . . . . . . 8 (𝜑 → ((𝐵(,)+∞) ∩ ((𝐴 ∩ (𝐷(,)𝐶)) ∪ {𝐶})) ∈ ((topGen‘ran (,)) ↾t ((𝐴 ∩ (𝐷(,)𝐶)) ∪ {𝐶})))
118110, 117eqeltrd 2829 . . . . . . 7 (𝜑 → (𝐵(,]𝐶) ∈ ((topGen‘ran (,)) ↾t ((𝐴 ∩ (𝐷(,)𝐶)) ∪ {𝐶})))
11917tgioo2 24732 . . . . . . . . 9 (topGen‘ran (,)) = ((TopOpen‘ℂfld) ↾t ℝ)
120119oveq1i 7430 . . . . . . . 8 ((topGen‘ran (,)) ↾t ((𝐴 ∩ (𝐷(,)𝐶)) ∪ {𝐶})) = (((TopOpen‘ℂfld) ↾t ℝ) ↾t ((𝐴 ∩ (𝐷(,)𝐶)) ∪ {𝐶}))
12128a1i 11 . . . . . . . . 9 (𝜑 → (TopOpen‘ℂfld) ∈ Top)
122 ioossre 13418 . . . . . . . . . . . 12 (𝐷(,)𝐶) ⊆ ℝ
12313, 122sstri 3989 . . . . . . . . . . 11 (𝐴 ∩ (𝐷(,)𝐶)) ⊆ ℝ
124123a1i 11 . . . . . . . . . 10 (𝜑 → (𝐴 ∩ (𝐷(,)𝐶)) ⊆ ℝ)
12520snssd 4813 . . . . . . . . . 10 (𝜑 → {𝐶} ⊆ ℝ)
126124, 125unssd 4186 . . . . . . . . 9 (𝜑 → ((𝐴 ∩ (𝐷(,)𝐶)) ∪ {𝐶}) ⊆ ℝ)
127 reex 11230 . . . . . . . . . 10 ℝ ∈ V
128127a1i 11 . . . . . . . . 9 (𝜑 → ℝ ∈ V)
129 restabs 23082 . . . . . . . . 9 (((TopOpen‘ℂfld) ∈ Top ∧ ((𝐴 ∩ (𝐷(,)𝐶)) ∪ {𝐶}) ⊆ ℝ ∧ ℝ ∈ V) → (((TopOpen‘ℂfld) ↾t ℝ) ↾t ((𝐴 ∩ (𝐷(,)𝐶)) ∪ {𝐶})) = ((TopOpen‘ℂfld) ↾t ((𝐴 ∩ (𝐷(,)𝐶)) ∪ {𝐶})))
130121, 126, 128, 129syl3anc 1369 . . . . . . . 8 (𝜑 → (((TopOpen‘ℂfld) ↾t ℝ) ↾t ((𝐴 ∩ (𝐷(,)𝐶)) ∪ {𝐶})) = ((TopOpen‘ℂfld) ↾t ((𝐴 ∩ (𝐷(,)𝐶)) ∪ {𝐶})))
131120, 130eqtrid 2780 . . . . . . 7 (𝜑 → ((topGen‘ran (,)) ↾t ((𝐴 ∩ (𝐷(,)𝐶)) ∪ {𝐶})) = ((TopOpen‘ℂfld) ↾t ((𝐴 ∩ (𝐷(,)𝐶)) ∪ {𝐶})))
132118, 131eleqtrd 2831 . . . . . 6 (𝜑 → (𝐵(,]𝐶) ∈ ((TopOpen‘ℂfld) ↾t ((𝐴 ∩ (𝐷(,)𝐶)) ∪ {𝐶})))
133 isopn3i 22999 . . . . . 6 ((((TopOpen‘ℂfld) ↾t ((𝐴 ∩ (𝐷(,)𝐶)) ∪ {𝐶})) ∈ Top ∧ (𝐵(,]𝐶) ∈ ((TopOpen‘ℂfld) ↾t ((𝐴 ∩ (𝐷(,)𝐶)) ∪ {𝐶}))) → ((int‘((TopOpen‘ℂfld) ↾t ((𝐴 ∩ (𝐷(,)𝐶)) ∪ {𝐶})))‘(𝐵(,]𝐶)) = (𝐵(,]𝐶))
13435, 132, 133syl2anc 583 . . . . 5 (𝜑 → ((int‘((TopOpen‘ℂfld) ↾t ((𝐴 ∩ (𝐷(,)𝐶)) ∪ {𝐶})))‘(𝐵(,]𝐶)) = (𝐵(,]𝐶))
13527, 134eqtr2d 2769 . . . 4 (𝜑 → (𝐵(,]𝐶) = ((int‘((TopOpen‘ℂfld) ↾t ((𝐴 ∩ (𝐷(,)𝐶)) ∪ {𝐶})))‘((𝐵(,)𝐶) ∪ {𝐶})))
13624, 135eleqtrd 2831 . . 3 (𝜑𝐶 ∈ ((int‘((TopOpen‘ℂfld) ↾t ((𝐴 ∩ (𝐷(,)𝐶)) ∪ {𝐶})))‘((𝐵(,)𝐶) ∪ {𝐶})))
13710, 12, 16, 17, 18, 136limcres 25828 . 2 (𝜑 → (((𝐹 ↾ (𝐷(,)𝐶)) ↾ (𝐵(,)𝐶)) lim 𝐶) = ((𝐹 ↾ (𝐷(,)𝐶)) lim 𝐶))
1387, 137eqtrd 2768 1 (𝜑 → ((𝐹 ↾ (𝐵(,)𝐶)) lim 𝐶) = ((𝐹 ↾ (𝐷(,)𝐶)) lim 𝐶))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 395   = wceq 1534  wcel 2099  wne 2937  wral 3058  Vcvv 3471  cun 3945  cin 3946  wss 3947  {csn 4629   class class class wbr 5148  ran crn 5679  cres 5680  wf 6544  cfv 6548  (class class class)co 7420  cc 11137  cr 11138  +∞cpnf 11276  *cxr 11278   < clt 11279  cle 11280  (,)cioo 13357  (,]cioc 13358  t crest 17402  TopOpenctopn 17403  topGenctg 17419  fldccnfld 21279  Topctop 22808  intcnt 22934   lim climc 25804
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1790  ax-4 1804  ax-5 1906  ax-6 1964  ax-7 2004  ax-8 2101  ax-9 2109  ax-10 2130  ax-11 2147  ax-12 2167  ax-ext 2699  ax-rep 5285  ax-sep 5299  ax-nul 5306  ax-pow 5365  ax-pr 5429  ax-un 7740  ax-cnex 11195  ax-resscn 11196  ax-1cn 11197  ax-icn 11198  ax-addcl 11199  ax-addrcl 11200  ax-mulcl 11201  ax-mulrcl 11202  ax-mulcom 11203  ax-addass 11204  ax-mulass 11205  ax-distr 11206  ax-i2m1 11207  ax-1ne0 11208  ax-1rid 11209  ax-rnegex 11210  ax-rrecex 11211  ax-cnre 11212  ax-pre-lttri 11213  ax-pre-lttrn 11214  ax-pre-ltadd 11215  ax-pre-mulgt0 11216  ax-pre-sup 11217
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 847  df-3or 1086  df-3an 1087  df-tru 1537  df-fal 1547  df-ex 1775  df-nf 1779  df-sb 2061  df-mo 2530  df-eu 2559  df-clab 2706  df-cleq 2720  df-clel 2806  df-nfc 2881  df-ne 2938  df-nel 3044  df-ral 3059  df-rex 3068  df-rmo 3373  df-reu 3374  df-rab 3430  df-v 3473  df-sbc 3777  df-csb 3893  df-dif 3950  df-un 3952  df-in 3954  df-ss 3964  df-pss 3966  df-nul 4324  df-if 4530  df-pw 4605  df-sn 4630  df-pr 4632  df-tp 4634  df-op 4636  df-uni 4909  df-int 4950  df-iun 4998  df-br 5149  df-opab 5211  df-mpt 5232  df-tr 5266  df-id 5576  df-eprel 5582  df-po 5590  df-so 5591  df-fr 5633  df-we 5635  df-xp 5684  df-rel 5685  df-cnv 5686  df-co 5687  df-dm 5688  df-rn 5689  df-res 5690  df-ima 5691  df-pred 6305  df-ord 6372  df-on 6373  df-lim 6374  df-suc 6375  df-iota 6500  df-fun 6550  df-fn 6551  df-f 6552  df-f1 6553  df-fo 6554  df-f1o 6555  df-fv 6556  df-riota 7376  df-ov 7423  df-oprab 7424  df-mpo 7425  df-om 7871  df-1st 7993  df-2nd 7994  df-frecs 8287  df-wrecs 8318  df-recs 8392  df-rdg 8431  df-1o 8487  df-er 8725  df-map 8847  df-pm 8848  df-en 8965  df-dom 8966  df-sdom 8967  df-fin 8968  df-fi 9435  df-sup 9466  df-inf 9467  df-pnf 11281  df-mnf 11282  df-xr 11283  df-ltxr 11284  df-le 11285  df-sub 11477  df-neg 11478  df-div 11903  df-nn 12244  df-2 12306  df-3 12307  df-4 12308  df-5 12309  df-6 12310  df-7 12311  df-8 12312  df-9 12313  df-n0 12504  df-z 12590  df-dec 12709  df-uz 12854  df-q 12964  df-rp 13008  df-xneg 13125  df-xadd 13126  df-xmul 13127  df-ioo 13361  df-ioc 13362  df-icc 13364  df-fz 13518  df-seq 14000  df-exp 14060  df-cj 15079  df-re 15080  df-im 15081  df-sqrt 15215  df-abs 15216  df-struct 17116  df-slot 17151  df-ndx 17163  df-base 17181  df-plusg 17246  df-mulr 17247  df-starv 17248  df-tset 17252  df-ple 17253  df-ds 17255  df-unif 17256  df-rest 17404  df-topn 17405  df-topgen 17425  df-psmet 21271  df-xmet 21272  df-met 21273  df-bl 21274  df-mopn 21275  df-cnfld 21280  df-top 22809  df-topon 22826  df-topsp 22848  df-bases 22862  df-ntr 22937  df-cnp 23145  df-xms 24239  df-ms 24240  df-limc 25808
This theorem is referenced by:  fouriersw  45619
  Copyright terms: Public domain W3C validator
OSZAR »