MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dvmptresicc Structured version   Visualization version   GIF version

Theorem dvmptresicc 25882
Description: Derivative of a function restricted to a closed interval. (Contributed by Glauco Siliprandi, 11-Dec-2019.)
Hypotheses
Ref Expression
dvmptresicc.f 𝐹 = (𝑥 ∈ ℂ ↦ 𝐴)
dvmptresicc.a ((𝜑𝑥 ∈ ℂ) → 𝐴 ∈ ℂ)
dvmptresicc.fdv (𝜑 → (ℂ D 𝐹) = (𝑥 ∈ ℂ ↦ 𝐵))
dvmptresicc.b ((𝜑𝑥 ∈ ℂ) → 𝐵 ∈ ℂ)
dvmptresicc.c (𝜑𝐶 ∈ ℝ)
dvmptresicc.d (𝜑𝐷 ∈ ℝ)
Assertion
Ref Expression
dvmptresicc (𝜑 → (ℝ D (𝑥 ∈ (𝐶[,]𝐷) ↦ 𝐴)) = (𝑥 ∈ (𝐶(,)𝐷) ↦ 𝐵))
Distinct variable groups:   𝑥,𝐶   𝑥,𝐷   𝜑,𝑥
Allowed substitution hints:   𝐴(𝑥)   𝐵(𝑥)   𝐹(𝑥)

Proof of Theorem dvmptresicc
StepHypRef Expression
1 dvmptresicc.f . . . . 5 𝐹 = (𝑥 ∈ ℂ ↦ 𝐴)
21reseq1i 5980 . . . 4 (𝐹 ↾ (𝐶[,]𝐷)) = ((𝑥 ∈ ℂ ↦ 𝐴) ↾ (𝐶[,]𝐷))
3 dvmptresicc.c . . . . . . 7 (𝜑𝐶 ∈ ℝ)
4 dvmptresicc.d . . . . . . 7 (𝜑𝐷 ∈ ℝ)
53, 4iccssred 13443 . . . . . 6 (𝜑 → (𝐶[,]𝐷) ⊆ ℝ)
6 ax-resscn 11195 . . . . . . 7 ℝ ⊆ ℂ
76a1i 11 . . . . . 6 (𝜑 → ℝ ⊆ ℂ)
85, 7sstrd 3988 . . . . 5 (𝜑 → (𝐶[,]𝐷) ⊆ ℂ)
98resmptd 6044 . . . 4 (𝜑 → ((𝑥 ∈ ℂ ↦ 𝐴) ↾ (𝐶[,]𝐷)) = (𝑥 ∈ (𝐶[,]𝐷) ↦ 𝐴))
102, 9eqtrid 2777 . . 3 (𝜑 → (𝐹 ↾ (𝐶[,]𝐷)) = (𝑥 ∈ (𝐶[,]𝐷) ↦ 𝐴))
1110oveq2d 7433 . 2 (𝜑 → (ℝ D (𝐹 ↾ (𝐶[,]𝐷))) = (ℝ D (𝑥 ∈ (𝐶[,]𝐷) ↦ 𝐴)))
125resabs1d 6012 . . . . 5 (𝜑 → ((𝐹 ↾ ℝ) ↾ (𝐶[,]𝐷)) = (𝐹 ↾ (𝐶[,]𝐷)))
1312eqcomd 2731 . . . 4 (𝜑 → (𝐹 ↾ (𝐶[,]𝐷)) = ((𝐹 ↾ ℝ) ↾ (𝐶[,]𝐷)))
1413oveq2d 7433 . . 3 (𝜑 → (ℝ D (𝐹 ↾ (𝐶[,]𝐷))) = (ℝ D ((𝐹 ↾ ℝ) ↾ (𝐶[,]𝐷))))
15 dvmptresicc.a . . . . . 6 ((𝜑𝑥 ∈ ℂ) → 𝐴 ∈ ℂ)
1615, 1fmptd 7121 . . . . 5 (𝜑𝐹:ℂ⟶ℂ)
1716, 7fssresd 6762 . . . 4 (𝜑 → (𝐹 ↾ ℝ):ℝ⟶ℂ)
18 ssidd 4001 . . . 4 (𝜑 → ℝ ⊆ ℝ)
19 eqid 2725 . . . . 5 (TopOpen‘ℂfld) = (TopOpen‘ℂfld)
2019tgioo2 24756 . . . . 5 (topGen‘ran (,)) = ((TopOpen‘ℂfld) ↾t ℝ)
2119, 20dvres 25877 . . . 4 (((ℝ ⊆ ℂ ∧ (𝐹 ↾ ℝ):ℝ⟶ℂ) ∧ (ℝ ⊆ ℝ ∧ (𝐶[,]𝐷) ⊆ ℝ)) → (ℝ D ((𝐹 ↾ ℝ) ↾ (𝐶[,]𝐷))) = ((ℝ D (𝐹 ↾ ℝ)) ↾ ((int‘(topGen‘ran (,)))‘(𝐶[,]𝐷))))
227, 17, 18, 5, 21syl22anc 837 . . 3 (𝜑 → (ℝ D ((𝐹 ↾ ℝ) ↾ (𝐶[,]𝐷))) = ((ℝ D (𝐹 ↾ ℝ)) ↾ ((int‘(topGen‘ran (,)))‘(𝐶[,]𝐷))))
23 reelprrecn 11230 . . . . . . 7 ℝ ∈ {ℝ, ℂ}
2423a1i 11 . . . . . 6 (𝜑 → ℝ ∈ {ℝ, ℂ})
25 ssidd 4001 . . . . . 6 (𝜑 → ℂ ⊆ ℂ)
26 dvmptresicc.fdv . . . . . . . . 9 (𝜑 → (ℂ D 𝐹) = (𝑥 ∈ ℂ ↦ 𝐵))
2726dmeqd 5907 . . . . . . . 8 (𝜑 → dom (ℂ D 𝐹) = dom (𝑥 ∈ ℂ ↦ 𝐵))
28 dvmptresicc.b . . . . . . . . . 10 ((𝜑𝑥 ∈ ℂ) → 𝐵 ∈ ℂ)
2928ralrimiva 3136 . . . . . . . . 9 (𝜑 → ∀𝑥 ∈ ℂ 𝐵 ∈ ℂ)
30 dmmptg 6246 . . . . . . . . 9 (∀𝑥 ∈ ℂ 𝐵 ∈ ℂ → dom (𝑥 ∈ ℂ ↦ 𝐵) = ℂ)
3129, 30syl 17 . . . . . . . 8 (𝜑 → dom (𝑥 ∈ ℂ ↦ 𝐵) = ℂ)
3227, 31eqtr2d 2766 . . . . . . 7 (𝜑 → ℂ = dom (ℂ D 𝐹))
337, 32sseqtrd 4018 . . . . . 6 (𝜑 → ℝ ⊆ dom (ℂ D 𝐹))
34 dvres3 25879 . . . . . 6 (((ℝ ∈ {ℝ, ℂ} ∧ 𝐹:ℂ⟶ℂ) ∧ (ℂ ⊆ ℂ ∧ ℝ ⊆ dom (ℂ D 𝐹))) → (ℝ D (𝐹 ↾ ℝ)) = ((ℂ D 𝐹) ↾ ℝ))
3524, 16, 25, 33, 34syl22anc 837 . . . . 5 (𝜑 → (ℝ D (𝐹 ↾ ℝ)) = ((ℂ D 𝐹) ↾ ℝ))
36 iccntr 24774 . . . . . 6 ((𝐶 ∈ ℝ ∧ 𝐷 ∈ ℝ) → ((int‘(topGen‘ran (,)))‘(𝐶[,]𝐷)) = (𝐶(,)𝐷))
373, 4, 36syl2anc 582 . . . . 5 (𝜑 → ((int‘(topGen‘ran (,)))‘(𝐶[,]𝐷)) = (𝐶(,)𝐷))
3835, 37reseq12d 5985 . . . 4 (𝜑 → ((ℝ D (𝐹 ↾ ℝ)) ↾ ((int‘(topGen‘ran (,)))‘(𝐶[,]𝐷))) = (((ℂ D 𝐹) ↾ ℝ) ↾ (𝐶(,)𝐷)))
39 ioossre 13417 . . . . 5 (𝐶(,)𝐷) ⊆ ℝ
40 resabs1 6011 . . . . 5 ((𝐶(,)𝐷) ⊆ ℝ → (((ℂ D 𝐹) ↾ ℝ) ↾ (𝐶(,)𝐷)) = ((ℂ D 𝐹) ↾ (𝐶(,)𝐷)))
4139, 40mp1i 13 . . . 4 (𝜑 → (((ℂ D 𝐹) ↾ ℝ) ↾ (𝐶(,)𝐷)) = ((ℂ D 𝐹) ↾ (𝐶(,)𝐷)))
4226reseq1d 5983 . . . . 5 (𝜑 → ((ℂ D 𝐹) ↾ (𝐶(,)𝐷)) = ((𝑥 ∈ ℂ ↦ 𝐵) ↾ (𝐶(,)𝐷)))
43 ioosscn 13418 . . . . . 6 (𝐶(,)𝐷) ⊆ ℂ
44 resmpt 6041 . . . . . 6 ((𝐶(,)𝐷) ⊆ ℂ → ((𝑥 ∈ ℂ ↦ 𝐵) ↾ (𝐶(,)𝐷)) = (𝑥 ∈ (𝐶(,)𝐷) ↦ 𝐵))
4543, 44mp1i 13 . . . . 5 (𝜑 → ((𝑥 ∈ ℂ ↦ 𝐵) ↾ (𝐶(,)𝐷)) = (𝑥 ∈ (𝐶(,)𝐷) ↦ 𝐵))
4642, 45eqtrd 2765 . . . 4 (𝜑 → ((ℂ D 𝐹) ↾ (𝐶(,)𝐷)) = (𝑥 ∈ (𝐶(,)𝐷) ↦ 𝐵))
4738, 41, 463eqtrd 2769 . . 3 (𝜑 → ((ℝ D (𝐹 ↾ ℝ)) ↾ ((int‘(topGen‘ran (,)))‘(𝐶[,]𝐷))) = (𝑥 ∈ (𝐶(,)𝐷) ↦ 𝐵))
4814, 22, 473eqtrd 2769 . 2 (𝜑 → (ℝ D (𝐹 ↾ (𝐶[,]𝐷))) = (𝑥 ∈ (𝐶(,)𝐷) ↦ 𝐵))
4911, 48eqtr3d 2767 1 (𝜑 → (ℝ D (𝑥 ∈ (𝐶[,]𝐷) ↦ 𝐴)) = (𝑥 ∈ (𝐶(,)𝐷) ↦ 𝐵))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 394   = wceq 1533  wcel 2098  wral 3051  wss 3945  {cpr 4631  cmpt 5231  dom cdm 5677  ran crn 5678  cres 5679  wf 6543  cfv 6547  (class class class)co 7417  cc 11136  cr 11137  (,)cioo 13356  [,]cicc 13359  TopOpenctopn 17403  topGenctg 17419  fldccnfld 21290  intcnt 22958   D cdv 25829
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2166  ax-ext 2696  ax-rep 5285  ax-sep 5299  ax-nul 5306  ax-pow 5364  ax-pr 5428  ax-un 7739  ax-cnex 11194  ax-resscn 11195  ax-1cn 11196  ax-icn 11197  ax-addcl 11198  ax-addrcl 11199  ax-mulcl 11200  ax-mulrcl 11201  ax-mulcom 11202  ax-addass 11203  ax-mulass 11204  ax-distr 11205  ax-i2m1 11206  ax-1ne0 11207  ax-1rid 11208  ax-rnegex 11209  ax-rrecex 11210  ax-cnre 11211  ax-pre-lttri 11212  ax-pre-lttrn 11213  ax-pre-ltadd 11214  ax-pre-mulgt0 11215  ax-pre-sup 11216
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 846  df-3or 1085  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2528  df-eu 2557  df-clab 2703  df-cleq 2717  df-clel 2802  df-nfc 2877  df-ne 2931  df-nel 3037  df-ral 3052  df-rex 3061  df-rmo 3364  df-reu 3365  df-rab 3420  df-v 3465  df-sbc 3775  df-csb 3891  df-dif 3948  df-un 3950  df-in 3952  df-ss 3962  df-pss 3965  df-nul 4324  df-if 4530  df-pw 4605  df-sn 4630  df-pr 4632  df-tp 4634  df-op 4636  df-uni 4909  df-int 4950  df-iun 4998  df-iin 4999  df-br 5149  df-opab 5211  df-mpt 5232  df-tr 5266  df-id 5575  df-eprel 5581  df-po 5589  df-so 5590  df-fr 5632  df-we 5634  df-xp 5683  df-rel 5684  df-cnv 5685  df-co 5686  df-dm 5687  df-rn 5688  df-res 5689  df-ima 5690  df-pred 6305  df-ord 6372  df-on 6373  df-lim 6374  df-suc 6375  df-iota 6499  df-fun 6549  df-fn 6550  df-f 6551  df-f1 6552  df-fo 6553  df-f1o 6554  df-fv 6555  df-riota 7373  df-ov 7420  df-oprab 7421  df-mpo 7422  df-om 7870  df-1st 7992  df-2nd 7993  df-frecs 8285  df-wrecs 8316  df-recs 8390  df-rdg 8429  df-1o 8485  df-er 8723  df-map 8845  df-pm 8846  df-en 8963  df-dom 8964  df-sdom 8965  df-fin 8966  df-fi 9434  df-sup 9465  df-inf 9466  df-pnf 11280  df-mnf 11281  df-xr 11282  df-ltxr 11283  df-le 11284  df-sub 11476  df-neg 11477  df-div 11902  df-nn 12243  df-2 12305  df-3 12306  df-4 12307  df-5 12308  df-6 12309  df-7 12310  df-8 12311  df-9 12312  df-n0 12503  df-z 12589  df-dec 12708  df-uz 12853  df-q 12963  df-rp 13007  df-xneg 13124  df-xadd 13125  df-xmul 13126  df-ioo 13360  df-ico 13362  df-icc 13363  df-fz 13517  df-seq 14000  df-exp 14060  df-cj 15079  df-re 15080  df-im 15081  df-sqrt 15215  df-abs 15216  df-struct 17116  df-slot 17151  df-ndx 17163  df-base 17181  df-plusg 17246  df-mulr 17247  df-starv 17248  df-tset 17252  df-ple 17253  df-ds 17255  df-unif 17256  df-rest 17404  df-topn 17405  df-topgen 17425  df-psmet 21282  df-xmet 21283  df-met 21284  df-bl 21285  df-mopn 21286  df-fbas 21287  df-fg 21288  df-cnfld 21291  df-top 22833  df-topon 22850  df-topsp 22872  df-bases 22886  df-cld 22960  df-ntr 22961  df-cls 22962  df-nei 23039  df-lp 23077  df-perf 23078  df-cnp 23169  df-haus 23256  df-fil 23787  df-fm 23879  df-flim 23880  df-flf 23881  df-xms 24263  df-ms 24264  df-limc 25832  df-dv 25833
This theorem is referenced by:  resdvopclptsd  41585  itgsincmulx  45442
  Copyright terms: Public domain W3C validator
OSZAR »