![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > dvmptresicc | Structured version Visualization version GIF version |
Description: Derivative of a function restricted to a closed interval. (Contributed by Glauco Siliprandi, 11-Dec-2019.) |
Ref | Expression |
---|---|
dvmptresicc.f | ⊢ 𝐹 = (𝑥 ∈ ℂ ↦ 𝐴) |
dvmptresicc.a | ⊢ ((𝜑 ∧ 𝑥 ∈ ℂ) → 𝐴 ∈ ℂ) |
dvmptresicc.fdv | ⊢ (𝜑 → (ℂ D 𝐹) = (𝑥 ∈ ℂ ↦ 𝐵)) |
dvmptresicc.b | ⊢ ((𝜑 ∧ 𝑥 ∈ ℂ) → 𝐵 ∈ ℂ) |
dvmptresicc.c | ⊢ (𝜑 → 𝐶 ∈ ℝ) |
dvmptresicc.d | ⊢ (𝜑 → 𝐷 ∈ ℝ) |
Ref | Expression |
---|---|
dvmptresicc | ⊢ (𝜑 → (ℝ D (𝑥 ∈ (𝐶[,]𝐷) ↦ 𝐴)) = (𝑥 ∈ (𝐶(,)𝐷) ↦ 𝐵)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dvmptresicc.f | . . . . 5 ⊢ 𝐹 = (𝑥 ∈ ℂ ↦ 𝐴) | |
2 | 1 | reseq1i 5980 | . . . 4 ⊢ (𝐹 ↾ (𝐶[,]𝐷)) = ((𝑥 ∈ ℂ ↦ 𝐴) ↾ (𝐶[,]𝐷)) |
3 | dvmptresicc.c | . . . . . . 7 ⊢ (𝜑 → 𝐶 ∈ ℝ) | |
4 | dvmptresicc.d | . . . . . . 7 ⊢ (𝜑 → 𝐷 ∈ ℝ) | |
5 | 3, 4 | iccssred 13443 | . . . . . 6 ⊢ (𝜑 → (𝐶[,]𝐷) ⊆ ℝ) |
6 | ax-resscn 11195 | . . . . . . 7 ⊢ ℝ ⊆ ℂ | |
7 | 6 | a1i 11 | . . . . . 6 ⊢ (𝜑 → ℝ ⊆ ℂ) |
8 | 5, 7 | sstrd 3988 | . . . . 5 ⊢ (𝜑 → (𝐶[,]𝐷) ⊆ ℂ) |
9 | 8 | resmptd 6044 | . . . 4 ⊢ (𝜑 → ((𝑥 ∈ ℂ ↦ 𝐴) ↾ (𝐶[,]𝐷)) = (𝑥 ∈ (𝐶[,]𝐷) ↦ 𝐴)) |
10 | 2, 9 | eqtrid 2777 | . . 3 ⊢ (𝜑 → (𝐹 ↾ (𝐶[,]𝐷)) = (𝑥 ∈ (𝐶[,]𝐷) ↦ 𝐴)) |
11 | 10 | oveq2d 7433 | . 2 ⊢ (𝜑 → (ℝ D (𝐹 ↾ (𝐶[,]𝐷))) = (ℝ D (𝑥 ∈ (𝐶[,]𝐷) ↦ 𝐴))) |
12 | 5 | resabs1d 6012 | . . . . 5 ⊢ (𝜑 → ((𝐹 ↾ ℝ) ↾ (𝐶[,]𝐷)) = (𝐹 ↾ (𝐶[,]𝐷))) |
13 | 12 | eqcomd 2731 | . . . 4 ⊢ (𝜑 → (𝐹 ↾ (𝐶[,]𝐷)) = ((𝐹 ↾ ℝ) ↾ (𝐶[,]𝐷))) |
14 | 13 | oveq2d 7433 | . . 3 ⊢ (𝜑 → (ℝ D (𝐹 ↾ (𝐶[,]𝐷))) = (ℝ D ((𝐹 ↾ ℝ) ↾ (𝐶[,]𝐷)))) |
15 | dvmptresicc.a | . . . . . 6 ⊢ ((𝜑 ∧ 𝑥 ∈ ℂ) → 𝐴 ∈ ℂ) | |
16 | 15, 1 | fmptd 7121 | . . . . 5 ⊢ (𝜑 → 𝐹:ℂ⟶ℂ) |
17 | 16, 7 | fssresd 6762 | . . . 4 ⊢ (𝜑 → (𝐹 ↾ ℝ):ℝ⟶ℂ) |
18 | ssidd 4001 | . . . 4 ⊢ (𝜑 → ℝ ⊆ ℝ) | |
19 | eqid 2725 | . . . . 5 ⊢ (TopOpen‘ℂfld) = (TopOpen‘ℂfld) | |
20 | 19 | tgioo2 24756 | . . . . 5 ⊢ (topGen‘ran (,)) = ((TopOpen‘ℂfld) ↾t ℝ) |
21 | 19, 20 | dvres 25877 | . . . 4 ⊢ (((ℝ ⊆ ℂ ∧ (𝐹 ↾ ℝ):ℝ⟶ℂ) ∧ (ℝ ⊆ ℝ ∧ (𝐶[,]𝐷) ⊆ ℝ)) → (ℝ D ((𝐹 ↾ ℝ) ↾ (𝐶[,]𝐷))) = ((ℝ D (𝐹 ↾ ℝ)) ↾ ((int‘(topGen‘ran (,)))‘(𝐶[,]𝐷)))) |
22 | 7, 17, 18, 5, 21 | syl22anc 837 | . . 3 ⊢ (𝜑 → (ℝ D ((𝐹 ↾ ℝ) ↾ (𝐶[,]𝐷))) = ((ℝ D (𝐹 ↾ ℝ)) ↾ ((int‘(topGen‘ran (,)))‘(𝐶[,]𝐷)))) |
23 | reelprrecn 11230 | . . . . . . 7 ⊢ ℝ ∈ {ℝ, ℂ} | |
24 | 23 | a1i 11 | . . . . . 6 ⊢ (𝜑 → ℝ ∈ {ℝ, ℂ}) |
25 | ssidd 4001 | . . . . . 6 ⊢ (𝜑 → ℂ ⊆ ℂ) | |
26 | dvmptresicc.fdv | . . . . . . . . 9 ⊢ (𝜑 → (ℂ D 𝐹) = (𝑥 ∈ ℂ ↦ 𝐵)) | |
27 | 26 | dmeqd 5907 | . . . . . . . 8 ⊢ (𝜑 → dom (ℂ D 𝐹) = dom (𝑥 ∈ ℂ ↦ 𝐵)) |
28 | dvmptresicc.b | . . . . . . . . . 10 ⊢ ((𝜑 ∧ 𝑥 ∈ ℂ) → 𝐵 ∈ ℂ) | |
29 | 28 | ralrimiva 3136 | . . . . . . . . 9 ⊢ (𝜑 → ∀𝑥 ∈ ℂ 𝐵 ∈ ℂ) |
30 | dmmptg 6246 | . . . . . . . . 9 ⊢ (∀𝑥 ∈ ℂ 𝐵 ∈ ℂ → dom (𝑥 ∈ ℂ ↦ 𝐵) = ℂ) | |
31 | 29, 30 | syl 17 | . . . . . . . 8 ⊢ (𝜑 → dom (𝑥 ∈ ℂ ↦ 𝐵) = ℂ) |
32 | 27, 31 | eqtr2d 2766 | . . . . . . 7 ⊢ (𝜑 → ℂ = dom (ℂ D 𝐹)) |
33 | 7, 32 | sseqtrd 4018 | . . . . . 6 ⊢ (𝜑 → ℝ ⊆ dom (ℂ D 𝐹)) |
34 | dvres3 25879 | . . . . . 6 ⊢ (((ℝ ∈ {ℝ, ℂ} ∧ 𝐹:ℂ⟶ℂ) ∧ (ℂ ⊆ ℂ ∧ ℝ ⊆ dom (ℂ D 𝐹))) → (ℝ D (𝐹 ↾ ℝ)) = ((ℂ D 𝐹) ↾ ℝ)) | |
35 | 24, 16, 25, 33, 34 | syl22anc 837 | . . . . 5 ⊢ (𝜑 → (ℝ D (𝐹 ↾ ℝ)) = ((ℂ D 𝐹) ↾ ℝ)) |
36 | iccntr 24774 | . . . . . 6 ⊢ ((𝐶 ∈ ℝ ∧ 𝐷 ∈ ℝ) → ((int‘(topGen‘ran (,)))‘(𝐶[,]𝐷)) = (𝐶(,)𝐷)) | |
37 | 3, 4, 36 | syl2anc 582 | . . . . 5 ⊢ (𝜑 → ((int‘(topGen‘ran (,)))‘(𝐶[,]𝐷)) = (𝐶(,)𝐷)) |
38 | 35, 37 | reseq12d 5985 | . . . 4 ⊢ (𝜑 → ((ℝ D (𝐹 ↾ ℝ)) ↾ ((int‘(topGen‘ran (,)))‘(𝐶[,]𝐷))) = (((ℂ D 𝐹) ↾ ℝ) ↾ (𝐶(,)𝐷))) |
39 | ioossre 13417 | . . . . 5 ⊢ (𝐶(,)𝐷) ⊆ ℝ | |
40 | resabs1 6011 | . . . . 5 ⊢ ((𝐶(,)𝐷) ⊆ ℝ → (((ℂ D 𝐹) ↾ ℝ) ↾ (𝐶(,)𝐷)) = ((ℂ D 𝐹) ↾ (𝐶(,)𝐷))) | |
41 | 39, 40 | mp1i 13 | . . . 4 ⊢ (𝜑 → (((ℂ D 𝐹) ↾ ℝ) ↾ (𝐶(,)𝐷)) = ((ℂ D 𝐹) ↾ (𝐶(,)𝐷))) |
42 | 26 | reseq1d 5983 | . . . . 5 ⊢ (𝜑 → ((ℂ D 𝐹) ↾ (𝐶(,)𝐷)) = ((𝑥 ∈ ℂ ↦ 𝐵) ↾ (𝐶(,)𝐷))) |
43 | ioosscn 13418 | . . . . . 6 ⊢ (𝐶(,)𝐷) ⊆ ℂ | |
44 | resmpt 6041 | . . . . . 6 ⊢ ((𝐶(,)𝐷) ⊆ ℂ → ((𝑥 ∈ ℂ ↦ 𝐵) ↾ (𝐶(,)𝐷)) = (𝑥 ∈ (𝐶(,)𝐷) ↦ 𝐵)) | |
45 | 43, 44 | mp1i 13 | . . . . 5 ⊢ (𝜑 → ((𝑥 ∈ ℂ ↦ 𝐵) ↾ (𝐶(,)𝐷)) = (𝑥 ∈ (𝐶(,)𝐷) ↦ 𝐵)) |
46 | 42, 45 | eqtrd 2765 | . . . 4 ⊢ (𝜑 → ((ℂ D 𝐹) ↾ (𝐶(,)𝐷)) = (𝑥 ∈ (𝐶(,)𝐷) ↦ 𝐵)) |
47 | 38, 41, 46 | 3eqtrd 2769 | . . 3 ⊢ (𝜑 → ((ℝ D (𝐹 ↾ ℝ)) ↾ ((int‘(topGen‘ran (,)))‘(𝐶[,]𝐷))) = (𝑥 ∈ (𝐶(,)𝐷) ↦ 𝐵)) |
48 | 14, 22, 47 | 3eqtrd 2769 | . 2 ⊢ (𝜑 → (ℝ D (𝐹 ↾ (𝐶[,]𝐷))) = (𝑥 ∈ (𝐶(,)𝐷) ↦ 𝐵)) |
49 | 11, 48 | eqtr3d 2767 | 1 ⊢ (𝜑 → (ℝ D (𝑥 ∈ (𝐶[,]𝐷) ↦ 𝐴)) = (𝑥 ∈ (𝐶(,)𝐷) ↦ 𝐵)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 394 = wceq 1533 ∈ wcel 2098 ∀wral 3051 ⊆ wss 3945 {cpr 4631 ↦ cmpt 5231 dom cdm 5677 ran crn 5678 ↾ cres 5679 ⟶wf 6543 ‘cfv 6547 (class class class)co 7417 ℂcc 11136 ℝcr 11137 (,)cioo 13356 [,]cicc 13359 TopOpenctopn 17403 topGenctg 17419 ℂfldccnfld 21290 intcnt 22958 D cdv 25829 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2166 ax-ext 2696 ax-rep 5285 ax-sep 5299 ax-nul 5306 ax-pow 5364 ax-pr 5428 ax-un 7739 ax-cnex 11194 ax-resscn 11195 ax-1cn 11196 ax-icn 11197 ax-addcl 11198 ax-addrcl 11199 ax-mulcl 11200 ax-mulrcl 11201 ax-mulcom 11202 ax-addass 11203 ax-mulass 11204 ax-distr 11205 ax-i2m1 11206 ax-1ne0 11207 ax-1rid 11208 ax-rnegex 11209 ax-rrecex 11210 ax-cnre 11211 ax-pre-lttri 11212 ax-pre-lttrn 11213 ax-pre-ltadd 11214 ax-pre-mulgt0 11215 ax-pre-sup 11216 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 846 df-3or 1085 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2528 df-eu 2557 df-clab 2703 df-cleq 2717 df-clel 2802 df-nfc 2877 df-ne 2931 df-nel 3037 df-ral 3052 df-rex 3061 df-rmo 3364 df-reu 3365 df-rab 3420 df-v 3465 df-sbc 3775 df-csb 3891 df-dif 3948 df-un 3950 df-in 3952 df-ss 3962 df-pss 3965 df-nul 4324 df-if 4530 df-pw 4605 df-sn 4630 df-pr 4632 df-tp 4634 df-op 4636 df-uni 4909 df-int 4950 df-iun 4998 df-iin 4999 df-br 5149 df-opab 5211 df-mpt 5232 df-tr 5266 df-id 5575 df-eprel 5581 df-po 5589 df-so 5590 df-fr 5632 df-we 5634 df-xp 5683 df-rel 5684 df-cnv 5685 df-co 5686 df-dm 5687 df-rn 5688 df-res 5689 df-ima 5690 df-pred 6305 df-ord 6372 df-on 6373 df-lim 6374 df-suc 6375 df-iota 6499 df-fun 6549 df-fn 6550 df-f 6551 df-f1 6552 df-fo 6553 df-f1o 6554 df-fv 6555 df-riota 7373 df-ov 7420 df-oprab 7421 df-mpo 7422 df-om 7870 df-1st 7992 df-2nd 7993 df-frecs 8285 df-wrecs 8316 df-recs 8390 df-rdg 8429 df-1o 8485 df-er 8723 df-map 8845 df-pm 8846 df-en 8963 df-dom 8964 df-sdom 8965 df-fin 8966 df-fi 9434 df-sup 9465 df-inf 9466 df-pnf 11280 df-mnf 11281 df-xr 11282 df-ltxr 11283 df-le 11284 df-sub 11476 df-neg 11477 df-div 11902 df-nn 12243 df-2 12305 df-3 12306 df-4 12307 df-5 12308 df-6 12309 df-7 12310 df-8 12311 df-9 12312 df-n0 12503 df-z 12589 df-dec 12708 df-uz 12853 df-q 12963 df-rp 13007 df-xneg 13124 df-xadd 13125 df-xmul 13126 df-ioo 13360 df-ico 13362 df-icc 13363 df-fz 13517 df-seq 14000 df-exp 14060 df-cj 15079 df-re 15080 df-im 15081 df-sqrt 15215 df-abs 15216 df-struct 17116 df-slot 17151 df-ndx 17163 df-base 17181 df-plusg 17246 df-mulr 17247 df-starv 17248 df-tset 17252 df-ple 17253 df-ds 17255 df-unif 17256 df-rest 17404 df-topn 17405 df-topgen 17425 df-psmet 21282 df-xmet 21283 df-met 21284 df-bl 21285 df-mopn 21286 df-fbas 21287 df-fg 21288 df-cnfld 21291 df-top 22833 df-topon 22850 df-topsp 22872 df-bases 22886 df-cld 22960 df-ntr 22961 df-cls 22962 df-nei 23039 df-lp 23077 df-perf 23078 df-cnp 23169 df-haus 23256 df-fil 23787 df-fm 23879 df-flim 23880 df-flf 23881 df-xms 24263 df-ms 24264 df-limc 25832 df-dv 25833 |
This theorem is referenced by: resdvopclptsd 41585 itgsincmulx 45442 |
Copyright terms: Public domain | W3C validator |