MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dvres Structured version   Visualization version   GIF version

Theorem dvres 25834
Description: Restriction of a derivative. Note that our definition of derivative df-dv 25790 would still make sense if we demanded that 𝑥 be an element of the domain instead of an interior point of the domain, but then it is possible for a non-differentiable function to have two different derivatives at a single point 𝑥 when restricted to different subsets containing 𝑥; a classic example is the absolute value function restricted to [0, +∞) and (-∞, 0]. (Contributed by Mario Carneiro, 8-Aug-2014.) (Revised by Mario Carneiro, 9-Feb-2015.)
Hypotheses
Ref Expression
dvres.k 𝐾 = (TopOpen‘ℂfld)
dvres.t 𝑇 = (𝐾t 𝑆)
Assertion
Ref Expression
dvres (((𝑆 ⊆ ℂ ∧ 𝐹:𝐴⟶ℂ) ∧ (𝐴𝑆𝐵𝑆)) → (𝑆 D (𝐹𝐵)) = ((𝑆 D 𝐹) ↾ ((int‘𝑇)‘𝐵)))

Proof of Theorem dvres
Dummy variables 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 reldv 25793 . 2 Rel (𝑆 D (𝐹𝐵))
2 relres 6009 . 2 Rel ((𝑆 D 𝐹) ↾ ((int‘𝑇)‘𝐵))
3 simpll 766 . . . . . 6 (((𝑆 ⊆ ℂ ∧ 𝐹:𝐴⟶ℂ) ∧ (𝐴𝑆𝐵𝑆)) → 𝑆 ⊆ ℂ)
4 simplr 768 . . . . . . . 8 (((𝑆 ⊆ ℂ ∧ 𝐹:𝐴⟶ℂ) ∧ (𝐴𝑆𝐵𝑆)) → 𝐹:𝐴⟶ℂ)
5 inss1 4225 . . . . . . . 8 (𝐴𝐵) ⊆ 𝐴
6 fssres 6758 . . . . . . . 8 ((𝐹:𝐴⟶ℂ ∧ (𝐴𝐵) ⊆ 𝐴) → (𝐹 ↾ (𝐴𝐵)):(𝐴𝐵)⟶ℂ)
74, 5, 6sylancl 585 . . . . . . 7 (((𝑆 ⊆ ℂ ∧ 𝐹:𝐴⟶ℂ) ∧ (𝐴𝑆𝐵𝑆)) → (𝐹 ↾ (𝐴𝐵)):(𝐴𝐵)⟶ℂ)
8 resres 5993 . . . . . . . . 9 ((𝐹𝐴) ↾ 𝐵) = (𝐹 ↾ (𝐴𝐵))
9 ffn 6717 . . . . . . . . . . 11 (𝐹:𝐴⟶ℂ → 𝐹 Fn 𝐴)
10 fnresdm 6669 . . . . . . . . . . 11 (𝐹 Fn 𝐴 → (𝐹𝐴) = 𝐹)
114, 9, 103syl 18 . . . . . . . . . 10 (((𝑆 ⊆ ℂ ∧ 𝐹:𝐴⟶ℂ) ∧ (𝐴𝑆𝐵𝑆)) → (𝐹𝐴) = 𝐹)
1211reseq1d 5979 . . . . . . . . 9 (((𝑆 ⊆ ℂ ∧ 𝐹:𝐴⟶ℂ) ∧ (𝐴𝑆𝐵𝑆)) → ((𝐹𝐴) ↾ 𝐵) = (𝐹𝐵))
138, 12eqtr3id 2782 . . . . . . . 8 (((𝑆 ⊆ ℂ ∧ 𝐹:𝐴⟶ℂ) ∧ (𝐴𝑆𝐵𝑆)) → (𝐹 ↾ (𝐴𝐵)) = (𝐹𝐵))
1413feq1d 6702 . . . . . . 7 (((𝑆 ⊆ ℂ ∧ 𝐹:𝐴⟶ℂ) ∧ (𝐴𝑆𝐵𝑆)) → ((𝐹 ↾ (𝐴𝐵)):(𝐴𝐵)⟶ℂ ↔ (𝐹𝐵):(𝐴𝐵)⟶ℂ))
157, 14mpbid 231 . . . . . 6 (((𝑆 ⊆ ℂ ∧ 𝐹:𝐴⟶ℂ) ∧ (𝐴𝑆𝐵𝑆)) → (𝐹𝐵):(𝐴𝐵)⟶ℂ)
16 simprl 770 . . . . . . 7 (((𝑆 ⊆ ℂ ∧ 𝐹:𝐴⟶ℂ) ∧ (𝐴𝑆𝐵𝑆)) → 𝐴𝑆)
175, 16sstrid 3990 . . . . . 6 (((𝑆 ⊆ ℂ ∧ 𝐹:𝐴⟶ℂ) ∧ (𝐴𝑆𝐵𝑆)) → (𝐴𝐵) ⊆ 𝑆)
183, 15, 17dvcl 25822 . . . . 5 ((((𝑆 ⊆ ℂ ∧ 𝐹:𝐴⟶ℂ) ∧ (𝐴𝑆𝐵𝑆)) ∧ 𝑥(𝑆 D (𝐹𝐵))𝑦) → 𝑦 ∈ ℂ)
1918ex 412 . . . 4 (((𝑆 ⊆ ℂ ∧ 𝐹:𝐴⟶ℂ) ∧ (𝐴𝑆𝐵𝑆)) → (𝑥(𝑆 D (𝐹𝐵))𝑦𝑦 ∈ ℂ))
203, 4, 16dvcl 25822 . . . . . 6 ((((𝑆 ⊆ ℂ ∧ 𝐹:𝐴⟶ℂ) ∧ (𝐴𝑆𝐵𝑆)) ∧ 𝑥(𝑆 D 𝐹)𝑦) → 𝑦 ∈ ℂ)
2120ex 412 . . . . 5 (((𝑆 ⊆ ℂ ∧ 𝐹:𝐴⟶ℂ) ∧ (𝐴𝑆𝐵𝑆)) → (𝑥(𝑆 D 𝐹)𝑦𝑦 ∈ ℂ))
2221adantld 490 . . . 4 (((𝑆 ⊆ ℂ ∧ 𝐹:𝐴⟶ℂ) ∧ (𝐴𝑆𝐵𝑆)) → ((𝑥 ∈ ((int‘𝑇)‘𝐵) ∧ 𝑥(𝑆 D 𝐹)𝑦) → 𝑦 ∈ ℂ))
23 dvres.k . . . . . 6 𝐾 = (TopOpen‘ℂfld)
24 dvres.t . . . . . 6 𝑇 = (𝐾t 𝑆)
25 eqid 2728 . . . . . 6 (𝑧 ∈ (𝐴 ∖ {𝑥}) ↦ (((𝐹𝑧) − (𝐹𝑥)) / (𝑧𝑥))) = (𝑧 ∈ (𝐴 ∖ {𝑥}) ↦ (((𝐹𝑧) − (𝐹𝑥)) / (𝑧𝑥)))
263adantr 480 . . . . . 6 ((((𝑆 ⊆ ℂ ∧ 𝐹:𝐴⟶ℂ) ∧ (𝐴𝑆𝐵𝑆)) ∧ 𝑦 ∈ ℂ) → 𝑆 ⊆ ℂ)
274adantr 480 . . . . . 6 ((((𝑆 ⊆ ℂ ∧ 𝐹:𝐴⟶ℂ) ∧ (𝐴𝑆𝐵𝑆)) ∧ 𝑦 ∈ ℂ) → 𝐹:𝐴⟶ℂ)
2816adantr 480 . . . . . 6 ((((𝑆 ⊆ ℂ ∧ 𝐹:𝐴⟶ℂ) ∧ (𝐴𝑆𝐵𝑆)) ∧ 𝑦 ∈ ℂ) → 𝐴𝑆)
29 simplrr 777 . . . . . 6 ((((𝑆 ⊆ ℂ ∧ 𝐹:𝐴⟶ℂ) ∧ (𝐴𝑆𝐵𝑆)) ∧ 𝑦 ∈ ℂ) → 𝐵𝑆)
30 simpr 484 . . . . . 6 ((((𝑆 ⊆ ℂ ∧ 𝐹:𝐴⟶ℂ) ∧ (𝐴𝑆𝐵𝑆)) ∧ 𝑦 ∈ ℂ) → 𝑦 ∈ ℂ)
3123, 24, 25, 26, 27, 28, 29, 30dvreslem 25832 . . . . 5 ((((𝑆 ⊆ ℂ ∧ 𝐹:𝐴⟶ℂ) ∧ (𝐴𝑆𝐵𝑆)) ∧ 𝑦 ∈ ℂ) → (𝑥(𝑆 D (𝐹𝐵))𝑦 ↔ (𝑥 ∈ ((int‘𝑇)‘𝐵) ∧ 𝑥(𝑆 D 𝐹)𝑦)))
3231ex 412 . . . 4 (((𝑆 ⊆ ℂ ∧ 𝐹:𝐴⟶ℂ) ∧ (𝐴𝑆𝐵𝑆)) → (𝑦 ∈ ℂ → (𝑥(𝑆 D (𝐹𝐵))𝑦 ↔ (𝑥 ∈ ((int‘𝑇)‘𝐵) ∧ 𝑥(𝑆 D 𝐹)𝑦))))
3319, 22, 32pm5.21ndd 379 . . 3 (((𝑆 ⊆ ℂ ∧ 𝐹:𝐴⟶ℂ) ∧ (𝐴𝑆𝐵𝑆)) → (𝑥(𝑆 D (𝐹𝐵))𝑦 ↔ (𝑥 ∈ ((int‘𝑇)‘𝐵) ∧ 𝑥(𝑆 D 𝐹)𝑦)))
34 vex 3474 . . . 4 𝑦 ∈ V
3534brresi 5989 . . 3 (𝑥((𝑆 D 𝐹) ↾ ((int‘𝑇)‘𝐵))𝑦 ↔ (𝑥 ∈ ((int‘𝑇)‘𝐵) ∧ 𝑥(𝑆 D 𝐹)𝑦))
3633, 35bitr4di 289 . 2 (((𝑆 ⊆ ℂ ∧ 𝐹:𝐴⟶ℂ) ∧ (𝐴𝑆𝐵𝑆)) → (𝑥(𝑆 D (𝐹𝐵))𝑦𝑥((𝑆 D 𝐹) ↾ ((int‘𝑇)‘𝐵))𝑦))
371, 2, 36eqbrrdiv 5791 1 (((𝑆 ⊆ ℂ ∧ 𝐹:𝐴⟶ℂ) ∧ (𝐴𝑆𝐵𝑆)) → (𝑆 D (𝐹𝐵)) = ((𝑆 D 𝐹) ↾ ((int‘𝑇)‘𝐵)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 395   = wceq 1534  wcel 2099  cdif 3942  cin 3944  wss 3945  {csn 4625   class class class wbr 5143  cmpt 5226  cres 5675   Fn wfn 6538  wf 6539  cfv 6543  (class class class)co 7415  cc 11131  cmin 11469   / cdiv 11896  t crest 17396  TopOpenctopn 17397  fldccnfld 21273  intcnt 22915   D cdv 25786
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1790  ax-4 1804  ax-5 1906  ax-6 1964  ax-7 2004  ax-8 2101  ax-9 2109  ax-10 2130  ax-11 2147  ax-12 2167  ax-ext 2699  ax-rep 5280  ax-sep 5294  ax-nul 5301  ax-pow 5360  ax-pr 5424  ax-un 7735  ax-cnex 11189  ax-resscn 11190  ax-1cn 11191  ax-icn 11192  ax-addcl 11193  ax-addrcl 11194  ax-mulcl 11195  ax-mulrcl 11196  ax-mulcom 11197  ax-addass 11198  ax-mulass 11199  ax-distr 11200  ax-i2m1 11201  ax-1ne0 11202  ax-1rid 11203  ax-rnegex 11204  ax-rrecex 11205  ax-cnre 11206  ax-pre-lttri 11207  ax-pre-lttrn 11208  ax-pre-ltadd 11209  ax-pre-mulgt0 11210  ax-pre-sup 11211
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 847  df-3or 1086  df-3an 1087  df-tru 1537  df-fal 1547  df-ex 1775  df-nf 1779  df-sb 2061  df-mo 2530  df-eu 2559  df-clab 2706  df-cleq 2720  df-clel 2806  df-nfc 2881  df-ne 2937  df-nel 3043  df-ral 3058  df-rex 3067  df-rmo 3372  df-reu 3373  df-rab 3429  df-v 3472  df-sbc 3776  df-csb 3891  df-dif 3948  df-un 3950  df-in 3952  df-ss 3962  df-pss 3964  df-nul 4320  df-if 4526  df-pw 4601  df-sn 4626  df-pr 4628  df-tp 4630  df-op 4632  df-uni 4905  df-int 4946  df-iun 4994  df-iin 4995  df-br 5144  df-opab 5206  df-mpt 5227  df-tr 5261  df-id 5571  df-eprel 5577  df-po 5585  df-so 5586  df-fr 5628  df-we 5630  df-xp 5679  df-rel 5680  df-cnv 5681  df-co 5682  df-dm 5683  df-rn 5684  df-res 5685  df-ima 5686  df-pred 6300  df-ord 6367  df-on 6368  df-lim 6369  df-suc 6370  df-iota 6495  df-fun 6545  df-fn 6546  df-f 6547  df-f1 6548  df-fo 6549  df-f1o 6550  df-fv 6551  df-riota 7371  df-ov 7418  df-oprab 7419  df-mpo 7420  df-om 7866  df-1st 7988  df-2nd 7989  df-frecs 8281  df-wrecs 8312  df-recs 8386  df-rdg 8425  df-1o 8481  df-er 8719  df-map 8841  df-pm 8842  df-en 8959  df-dom 8960  df-sdom 8961  df-fin 8962  df-fi 9429  df-sup 9460  df-inf 9461  df-pnf 11275  df-mnf 11276  df-xr 11277  df-ltxr 11278  df-le 11279  df-sub 11471  df-neg 11472  df-div 11897  df-nn 12238  df-2 12300  df-3 12301  df-4 12302  df-5 12303  df-6 12304  df-7 12305  df-8 12306  df-9 12307  df-n0 12498  df-z 12584  df-dec 12703  df-uz 12848  df-q 12958  df-rp 13002  df-xneg 13119  df-xadd 13120  df-xmul 13121  df-fz 13512  df-seq 13994  df-exp 14054  df-cj 15073  df-re 15074  df-im 15075  df-sqrt 15209  df-abs 15210  df-struct 17110  df-slot 17145  df-ndx 17157  df-base 17175  df-plusg 17240  df-mulr 17241  df-starv 17242  df-tset 17246  df-ple 17247  df-ds 17249  df-unif 17250  df-rest 17398  df-topn 17399  df-topgen 17419  df-psmet 21265  df-xmet 21266  df-met 21267  df-bl 21268  df-mopn 21269  df-cnfld 21274  df-top 22790  df-topon 22807  df-topsp 22829  df-bases 22843  df-cld 22917  df-ntr 22918  df-cls 22919  df-cnp 23126  df-xms 24220  df-ms 24221  df-limc 25789  df-dv 25790
This theorem is referenced by:  dvmptresicc  25839  dvcmulf  25870  dvmptres2  25888  dvmptntr  25897  dvlip  25920  dvlipcn  25921  dvlip2  25922  c1liplem1  25923  dvgt0lem1  25929  dvne0  25938  lhop1lem  25940  lhop  25943  dvcnvrelem1  25944  dvcvx  25947  ftc2ditglem  25974  pserdv  26360  efcvx  26380  dvlog  26579  dvlog2  26581  ftc2re  34225  dvresntr  45297  dvresioo  45300  dvbdfbdioolem1  45307  itgcoscmulx  45348  itgiccshift  45359  itgperiod  45360  dirkercncflem2  45483  fourierdlem57  45542  fourierdlem58  45543  fourierdlem72  45557  fourierdlem73  45558  fourierdlem74  45559  fourierdlem75  45560  fourierdlem80  45565  fourierdlem94  45579  fourierdlem103  45588  fourierdlem104  45589  fourierdlem113  45598
  Copyright terms: Public domain W3C validator
OSZAR »