![]() |
Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > dvresntr | Structured version Visualization version GIF version |
Description: Function-builder for derivative: expand the function from an open set to its closure. (Contributed by Glauco Siliprandi, 11-Dec-2019.) |
Ref | Expression |
---|---|
dvresntr.s | ⊢ (𝜑 → 𝑆 ⊆ ℂ) |
dvresntr.x | ⊢ (𝜑 → 𝑋 ⊆ 𝑆) |
dvresntr.f | ⊢ (𝜑 → 𝐹:𝑋⟶ℂ) |
dvresntr.j | ⊢ 𝐽 = (𝐾 ↾t 𝑆) |
dvresntr.k | ⊢ 𝐾 = (TopOpen‘ℂfld) |
dvresntr.i | ⊢ (𝜑 → ((int‘𝐽)‘𝑋) = 𝑌) |
Ref | Expression |
---|---|
dvresntr | ⊢ (𝜑 → (𝑆 D 𝐹) = (𝑆 D (𝐹 ↾ 𝑌))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dvresntr.s | . . 3 ⊢ (𝜑 → 𝑆 ⊆ ℂ) | |
2 | dvresntr.f | . . 3 ⊢ (𝜑 → 𝐹:𝑋⟶ℂ) | |
3 | dvresntr.x | . . 3 ⊢ (𝜑 → 𝑋 ⊆ 𝑆) | |
4 | dvresntr.k | . . . 4 ⊢ 𝐾 = (TopOpen‘ℂfld) | |
5 | dvresntr.j | . . . 4 ⊢ 𝐽 = (𝐾 ↾t 𝑆) | |
6 | 4, 5 | dvres 25839 | . . 3 ⊢ (((𝑆 ⊆ ℂ ∧ 𝐹:𝑋⟶ℂ) ∧ (𝑋 ⊆ 𝑆 ∧ 𝑋 ⊆ 𝑆)) → (𝑆 D (𝐹 ↾ 𝑋)) = ((𝑆 D 𝐹) ↾ ((int‘𝐽)‘𝑋))) |
7 | 1, 2, 3, 3, 6 | syl22anc 838 | . 2 ⊢ (𝜑 → (𝑆 D (𝐹 ↾ 𝑋)) = ((𝑆 D 𝐹) ↾ ((int‘𝐽)‘𝑋))) |
8 | ffn 6722 | . . . 4 ⊢ (𝐹:𝑋⟶ℂ → 𝐹 Fn 𝑋) | |
9 | fnresdm 6674 | . . . 4 ⊢ (𝐹 Fn 𝑋 → (𝐹 ↾ 𝑋) = 𝐹) | |
10 | 2, 8, 9 | 3syl 18 | . . 3 ⊢ (𝜑 → (𝐹 ↾ 𝑋) = 𝐹) |
11 | 10 | oveq2d 7436 | . 2 ⊢ (𝜑 → (𝑆 D (𝐹 ↾ 𝑋)) = (𝑆 D 𝐹)) |
12 | 4 | cnfldtopon 24698 | . . . . . . . . 9 ⊢ 𝐾 ∈ (TopOn‘ℂ) |
13 | resttopon 23064 | . . . . . . . . 9 ⊢ ((𝐾 ∈ (TopOn‘ℂ) ∧ 𝑆 ⊆ ℂ) → (𝐾 ↾t 𝑆) ∈ (TopOn‘𝑆)) | |
14 | 12, 1, 13 | sylancr 586 | . . . . . . . 8 ⊢ (𝜑 → (𝐾 ↾t 𝑆) ∈ (TopOn‘𝑆)) |
15 | 5, 14 | eqeltrid 2833 | . . . . . . 7 ⊢ (𝜑 → 𝐽 ∈ (TopOn‘𝑆)) |
16 | topontop 22814 | . . . . . . 7 ⊢ (𝐽 ∈ (TopOn‘𝑆) → 𝐽 ∈ Top) | |
17 | 15, 16 | syl 17 | . . . . . 6 ⊢ (𝜑 → 𝐽 ∈ Top) |
18 | toponuni 22815 | . . . . . . . 8 ⊢ (𝐽 ∈ (TopOn‘𝑆) → 𝑆 = ∪ 𝐽) | |
19 | 15, 18 | syl 17 | . . . . . . 7 ⊢ (𝜑 → 𝑆 = ∪ 𝐽) |
20 | 3, 19 | sseqtrd 4020 | . . . . . 6 ⊢ (𝜑 → 𝑋 ⊆ ∪ 𝐽) |
21 | eqid 2728 | . . . . . . 7 ⊢ ∪ 𝐽 = ∪ 𝐽 | |
22 | 21 | ntridm 22971 | . . . . . 6 ⊢ ((𝐽 ∈ Top ∧ 𝑋 ⊆ ∪ 𝐽) → ((int‘𝐽)‘((int‘𝐽)‘𝑋)) = ((int‘𝐽)‘𝑋)) |
23 | 17, 20, 22 | syl2anc 583 | . . . . 5 ⊢ (𝜑 → ((int‘𝐽)‘((int‘𝐽)‘𝑋)) = ((int‘𝐽)‘𝑋)) |
24 | dvresntr.i | . . . . . 6 ⊢ (𝜑 → ((int‘𝐽)‘𝑋) = 𝑌) | |
25 | 24 | fveq2d 6901 | . . . . 5 ⊢ (𝜑 → ((int‘𝐽)‘((int‘𝐽)‘𝑋)) = ((int‘𝐽)‘𝑌)) |
26 | 23, 25, 24 | 3eqtr3d 2776 | . . . 4 ⊢ (𝜑 → ((int‘𝐽)‘𝑌) = 𝑌) |
27 | 26 | reseq2d 5985 | . . 3 ⊢ (𝜑 → ((𝑆 D 𝐹) ↾ ((int‘𝐽)‘𝑌)) = ((𝑆 D 𝐹) ↾ 𝑌)) |
28 | 21 | ntrss2 22960 | . . . . . . 7 ⊢ ((𝐽 ∈ Top ∧ 𝑋 ⊆ ∪ 𝐽) → ((int‘𝐽)‘𝑋) ⊆ 𝑋) |
29 | 17, 20, 28 | syl2anc 583 | . . . . . 6 ⊢ (𝜑 → ((int‘𝐽)‘𝑋) ⊆ 𝑋) |
30 | 24, 29 | eqsstrrd 4019 | . . . . 5 ⊢ (𝜑 → 𝑌 ⊆ 𝑋) |
31 | 30, 3 | sstrd 3990 | . . . 4 ⊢ (𝜑 → 𝑌 ⊆ 𝑆) |
32 | 4, 5 | dvres 25839 | . . . 4 ⊢ (((𝑆 ⊆ ℂ ∧ 𝐹:𝑋⟶ℂ) ∧ (𝑋 ⊆ 𝑆 ∧ 𝑌 ⊆ 𝑆)) → (𝑆 D (𝐹 ↾ 𝑌)) = ((𝑆 D 𝐹) ↾ ((int‘𝐽)‘𝑌))) |
33 | 1, 2, 3, 31, 32 | syl22anc 838 | . . 3 ⊢ (𝜑 → (𝑆 D (𝐹 ↾ 𝑌)) = ((𝑆 D 𝐹) ↾ ((int‘𝐽)‘𝑌))) |
34 | 24 | reseq2d 5985 | . . 3 ⊢ (𝜑 → ((𝑆 D 𝐹) ↾ ((int‘𝐽)‘𝑋)) = ((𝑆 D 𝐹) ↾ 𝑌)) |
35 | 27, 33, 34 | 3eqtr4rd 2779 | . 2 ⊢ (𝜑 → ((𝑆 D 𝐹) ↾ ((int‘𝐽)‘𝑋)) = (𝑆 D (𝐹 ↾ 𝑌))) |
36 | 7, 11, 35 | 3eqtr3d 2776 | 1 ⊢ (𝜑 → (𝑆 D 𝐹) = (𝑆 D (𝐹 ↾ 𝑌))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1534 ∈ wcel 2099 ⊆ wss 3947 ∪ cuni 4908 ↾ cres 5680 Fn wfn 6543 ⟶wf 6544 ‘cfv 6548 (class class class)co 7420 ℂcc 11136 ↾t crest 17401 TopOpenctopn 17402 ℂfldccnfld 21278 Topctop 22794 TopOnctopon 22811 intcnt 22920 D cdv 25791 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1790 ax-4 1804 ax-5 1906 ax-6 1964 ax-7 2004 ax-8 2101 ax-9 2109 ax-10 2130 ax-11 2147 ax-12 2167 ax-ext 2699 ax-rep 5285 ax-sep 5299 ax-nul 5306 ax-pow 5365 ax-pr 5429 ax-un 7740 ax-cnex 11194 ax-resscn 11195 ax-1cn 11196 ax-icn 11197 ax-addcl 11198 ax-addrcl 11199 ax-mulcl 11200 ax-mulrcl 11201 ax-mulcom 11202 ax-addass 11203 ax-mulass 11204 ax-distr 11205 ax-i2m1 11206 ax-1ne0 11207 ax-1rid 11208 ax-rnegex 11209 ax-rrecex 11210 ax-cnre 11211 ax-pre-lttri 11212 ax-pre-lttrn 11213 ax-pre-ltadd 11214 ax-pre-mulgt0 11215 ax-pre-sup 11216 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 847 df-3or 1086 df-3an 1087 df-tru 1537 df-fal 1547 df-ex 1775 df-nf 1779 df-sb 2061 df-mo 2530 df-eu 2559 df-clab 2706 df-cleq 2720 df-clel 2806 df-nfc 2881 df-ne 2938 df-nel 3044 df-ral 3059 df-rex 3068 df-rmo 3373 df-reu 3374 df-rab 3430 df-v 3473 df-sbc 3777 df-csb 3893 df-dif 3950 df-un 3952 df-in 3954 df-ss 3964 df-pss 3966 df-nul 4324 df-if 4530 df-pw 4605 df-sn 4630 df-pr 4632 df-tp 4634 df-op 4636 df-uni 4909 df-int 4950 df-iun 4998 df-iin 4999 df-br 5149 df-opab 5211 df-mpt 5232 df-tr 5266 df-id 5576 df-eprel 5582 df-po 5590 df-so 5591 df-fr 5633 df-we 5635 df-xp 5684 df-rel 5685 df-cnv 5686 df-co 5687 df-dm 5688 df-rn 5689 df-res 5690 df-ima 5691 df-pred 6305 df-ord 6372 df-on 6373 df-lim 6374 df-suc 6375 df-iota 6500 df-fun 6550 df-fn 6551 df-f 6552 df-f1 6553 df-fo 6554 df-f1o 6555 df-fv 6556 df-riota 7376 df-ov 7423 df-oprab 7424 df-mpo 7425 df-om 7871 df-1st 7993 df-2nd 7994 df-frecs 8286 df-wrecs 8317 df-recs 8391 df-rdg 8430 df-1o 8486 df-er 8724 df-map 8846 df-pm 8847 df-en 8964 df-dom 8965 df-sdom 8966 df-fin 8967 df-fi 9434 df-sup 9465 df-inf 9466 df-pnf 11280 df-mnf 11281 df-xr 11282 df-ltxr 11283 df-le 11284 df-sub 11476 df-neg 11477 df-div 11902 df-nn 12243 df-2 12305 df-3 12306 df-4 12307 df-5 12308 df-6 12309 df-7 12310 df-8 12311 df-9 12312 df-n0 12503 df-z 12589 df-dec 12708 df-uz 12853 df-q 12963 df-rp 13007 df-xneg 13124 df-xadd 13125 df-xmul 13126 df-fz 13517 df-seq 13999 df-exp 14059 df-cj 15078 df-re 15079 df-im 15080 df-sqrt 15214 df-abs 15215 df-struct 17115 df-slot 17150 df-ndx 17162 df-base 17180 df-plusg 17245 df-mulr 17246 df-starv 17247 df-tset 17251 df-ple 17252 df-ds 17254 df-unif 17255 df-rest 17403 df-topn 17404 df-topgen 17424 df-psmet 21270 df-xmet 21271 df-met 21272 df-bl 21273 df-mopn 21274 df-cnfld 21279 df-top 22795 df-topon 22812 df-topsp 22834 df-bases 22848 df-cld 22922 df-ntr 22923 df-cls 22924 df-cnp 23131 df-xms 24225 df-ms 24226 df-limc 25794 df-dv 25795 |
This theorem is referenced by: fourierdlem73 45567 |
Copyright terms: Public domain | W3C validator |