Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  dvmptidg Structured version   Visualization version   GIF version

Theorem dvmptidg 45305
Description: Function-builder for derivative: derivative of the identity. (Contributed by Glauco Siliprandi, 11-Dec-2019.)
Hypotheses
Ref Expression
dvmptidg.s (𝜑𝑆 ∈ {ℝ, ℂ})
dvmptidg.a (𝜑𝐴 ∈ ((TopOpen‘ℂfld) ↾t 𝑆))
Assertion
Ref Expression
dvmptidg (𝜑 → (𝑆 D (𝑥𝐴𝑥)) = (𝑥𝐴 ↦ 1))
Distinct variable groups:   𝑥,𝐴   𝑥,𝑆   𝜑,𝑥

Proof of Theorem dvmptidg
StepHypRef Expression
1 dvmptidg.s . 2 (𝜑𝑆 ∈ {ℝ, ℂ})
2 ax-resscn 11196 . . . . . 6 ℝ ⊆ ℂ
3 sseq1 4005 . . . . . 6 (𝑆 = ℝ → (𝑆 ⊆ ℂ ↔ ℝ ⊆ ℂ))
42, 3mpbiri 258 . . . . 5 (𝑆 = ℝ → 𝑆 ⊆ ℂ)
5 eqimss 4038 . . . . 5 (𝑆 = ℂ → 𝑆 ⊆ ℂ)
64, 5pm3.2i 470 . . . 4 ((𝑆 = ℝ → 𝑆 ⊆ ℂ) ∧ (𝑆 = ℂ → 𝑆 ⊆ ℂ))
7 elpri 4651 . . . . 5 (𝑆 ∈ {ℝ, ℂ} → (𝑆 = ℝ ∨ 𝑆 = ℂ))
81, 7syl 17 . . . 4 (𝜑 → (𝑆 = ℝ ∨ 𝑆 = ℂ))
9 pm3.44 958 . . . 4 (((𝑆 = ℝ → 𝑆 ⊆ ℂ) ∧ (𝑆 = ℂ → 𝑆 ⊆ ℂ)) → ((𝑆 = ℝ ∨ 𝑆 = ℂ) → 𝑆 ⊆ ℂ))
106, 8, 9mpsyl 68 . . 3 (𝜑𝑆 ⊆ ℂ)
1110sselda 3980 . 2 ((𝜑𝑥𝑆) → 𝑥 ∈ ℂ)
12 1red 11246 . 2 ((𝜑𝑥𝑆) → 1 ∈ ℝ)
131dvmptid 25902 . 2 (𝜑 → (𝑆 D (𝑥𝑆𝑥)) = (𝑥𝑆 ↦ 1))
14 eqid 2728 . . . . . 6 (TopOpen‘ℂfld) = (TopOpen‘ℂfld)
1514cnfldtopon 24712 . . . . 5 (TopOpen‘ℂfld) ∈ (TopOn‘ℂ)
1615a1i 11 . . . 4 (𝜑 → (TopOpen‘ℂfld) ∈ (TopOn‘ℂ))
17 resttopon 23078 . . . 4 (((TopOpen‘ℂfld) ∈ (TopOn‘ℂ) ∧ 𝑆 ⊆ ℂ) → ((TopOpen‘ℂfld) ↾t 𝑆) ∈ (TopOn‘𝑆))
1816, 10, 17syl2anc 583 . . 3 (𝜑 → ((TopOpen‘ℂfld) ↾t 𝑆) ∈ (TopOn‘𝑆))
19 dvmptidg.a . . 3 (𝜑𝐴 ∈ ((TopOpen‘ℂfld) ↾t 𝑆))
20 toponss 22842 . . 3 ((((TopOpen‘ℂfld) ↾t 𝑆) ∈ (TopOn‘𝑆) ∧ 𝐴 ∈ ((TopOpen‘ℂfld) ↾t 𝑆)) → 𝐴𝑆)
2118, 19, 20syl2anc 583 . 2 (𝜑𝐴𝑆)
22 eqid 2728 . 2 ((TopOpen‘ℂfld) ↾t 𝑆) = ((TopOpen‘ℂfld) ↾t 𝑆)
231, 11, 12, 13, 21, 22, 14, 19dvmptres 25908 1 (𝜑 → (𝑆 D (𝑥𝐴𝑥)) = (𝑥𝐴 ↦ 1))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  wo 846   = wceq 1534  wcel 2099  wss 3947  {cpr 4631  cmpt 5231  cfv 6548  (class class class)co 7420  cc 11137  cr 11138  1c1 11140  t crest 17402  TopOpenctopn 17403  fldccnfld 21279  TopOnctopon 22825   D cdv 25805
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1790  ax-4 1804  ax-5 1906  ax-6 1964  ax-7 2004  ax-8 2101  ax-9 2109  ax-10 2130  ax-11 2147  ax-12 2167  ax-ext 2699  ax-rep 5285  ax-sep 5299  ax-nul 5306  ax-pow 5365  ax-pr 5429  ax-un 7740  ax-cnex 11195  ax-resscn 11196  ax-1cn 11197  ax-icn 11198  ax-addcl 11199  ax-addrcl 11200  ax-mulcl 11201  ax-mulrcl 11202  ax-mulcom 11203  ax-addass 11204  ax-mulass 11205  ax-distr 11206  ax-i2m1 11207  ax-1ne0 11208  ax-1rid 11209  ax-rnegex 11210  ax-rrecex 11211  ax-cnre 11212  ax-pre-lttri 11213  ax-pre-lttrn 11214  ax-pre-ltadd 11215  ax-pre-mulgt0 11216  ax-pre-sup 11217
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 847  df-3or 1086  df-3an 1087  df-tru 1537  df-fal 1547  df-ex 1775  df-nf 1779  df-sb 2061  df-mo 2530  df-eu 2559  df-clab 2706  df-cleq 2720  df-clel 2806  df-nfc 2881  df-ne 2938  df-nel 3044  df-ral 3059  df-rex 3068  df-rmo 3373  df-reu 3374  df-rab 3430  df-v 3473  df-sbc 3777  df-csb 3893  df-dif 3950  df-un 3952  df-in 3954  df-ss 3964  df-pss 3966  df-nul 4324  df-if 4530  df-pw 4605  df-sn 4630  df-pr 4632  df-tp 4634  df-op 4636  df-uni 4909  df-int 4950  df-iun 4998  df-iin 4999  df-br 5149  df-opab 5211  df-mpt 5232  df-tr 5266  df-id 5576  df-eprel 5582  df-po 5590  df-so 5591  df-fr 5633  df-we 5635  df-xp 5684  df-rel 5685  df-cnv 5686  df-co 5687  df-dm 5688  df-rn 5689  df-res 5690  df-ima 5691  df-pred 6305  df-ord 6372  df-on 6373  df-lim 6374  df-suc 6375  df-iota 6500  df-fun 6550  df-fn 6551  df-f 6552  df-f1 6553  df-fo 6554  df-f1o 6555  df-fv 6556  df-riota 7376  df-ov 7423  df-oprab 7424  df-mpo 7425  df-om 7871  df-1st 7993  df-2nd 7994  df-frecs 8287  df-wrecs 8318  df-recs 8392  df-rdg 8431  df-1o 8487  df-er 8725  df-map 8847  df-pm 8848  df-en 8965  df-dom 8966  df-sdom 8967  df-fin 8968  df-fi 9435  df-sup 9466  df-inf 9467  df-pnf 11281  df-mnf 11282  df-xr 11283  df-ltxr 11284  df-le 11285  df-sub 11477  df-neg 11478  df-div 11903  df-nn 12244  df-2 12306  df-3 12307  df-4 12308  df-5 12309  df-6 12310  df-7 12311  df-8 12312  df-9 12313  df-n0 12504  df-z 12590  df-dec 12709  df-uz 12854  df-q 12964  df-rp 13008  df-xneg 13125  df-xadd 13126  df-xmul 13127  df-icc 13364  df-fz 13518  df-seq 14000  df-exp 14060  df-cj 15079  df-re 15080  df-im 15081  df-sqrt 15215  df-abs 15216  df-struct 17116  df-slot 17151  df-ndx 17163  df-base 17181  df-plusg 17246  df-mulr 17247  df-starv 17248  df-tset 17252  df-ple 17253  df-ds 17255  df-unif 17256  df-rest 17404  df-topn 17405  df-topgen 17425  df-psmet 21271  df-xmet 21272  df-met 21273  df-bl 21274  df-mopn 21275  df-fbas 21276  df-fg 21277  df-cnfld 21280  df-top 22809  df-topon 22826  df-topsp 22848  df-bases 22862  df-cld 22936  df-ntr 22937  df-cls 22938  df-nei 23015  df-lp 23053  df-perf 23054  df-cn 23144  df-cnp 23145  df-haus 23232  df-fil 23763  df-fm 23855  df-flim 23856  df-flf 23857  df-xms 24239  df-ms 24240  df-cncf 24811  df-limc 25808  df-dv 25809
This theorem is referenced by:  dvxpaek  45328  fourierdlem28  45523  fourierdlem58  45552  fourierdlem59  45553
  Copyright terms: Public domain W3C validator
OSZAR »