MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  reu4 Structured version   Visualization version   GIF version

Theorem reu4 3725
Description: Restricted uniqueness using implicit substitution. (Contributed by NM, 23-Nov-1994.)
Hypothesis
Ref Expression
rmo4.1 (𝑥 = 𝑦 → (𝜑𝜓))
Assertion
Ref Expression
reu4 (∃!𝑥𝐴 𝜑 ↔ (∃𝑥𝐴 𝜑 ∧ ∀𝑥𝐴𝑦𝐴 ((𝜑𝜓) → 𝑥 = 𝑦)))
Distinct variable groups:   𝑥,𝑦,𝐴   𝜑,𝑦   𝜓,𝑥
Allowed substitution hints:   𝜑(𝑥)   𝜓(𝑦)

Proof of Theorem reu4
StepHypRef Expression
1 reu5 3374 . 2 (∃!𝑥𝐴 𝜑 ↔ (∃𝑥𝐴 𝜑 ∧ ∃*𝑥𝐴 𝜑))
2 rmo4.1 . . . 4 (𝑥 = 𝑦 → (𝜑𝜓))
32rmo4 3724 . . 3 (∃*𝑥𝐴 𝜑 ↔ ∀𝑥𝐴𝑦𝐴 ((𝜑𝜓) → 𝑥 = 𝑦))
43anbi2i 622 . 2 ((∃𝑥𝐴 𝜑 ∧ ∃*𝑥𝐴 𝜑) ↔ (∃𝑥𝐴 𝜑 ∧ ∀𝑥𝐴𝑦𝐴 ((𝜑𝜓) → 𝑥 = 𝑦)))
51, 4bitri 275 1 (∃!𝑥𝐴 𝜑 ↔ (∃𝑥𝐴 𝜑 ∧ ∀𝑥𝐴𝑦𝐴 ((𝜑𝜓) → 𝑥 = 𝑦)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 395  wral 3057  wrex 3066  ∃!wreu 3370  ∃*wrmo 3371
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1790  ax-4 1804  ax-5 1906  ax-6 1964  ax-7 2004  ax-8 2101
This theorem depends on definitions:  df-bi 206  df-an 396  df-ex 1775  df-mo 2530  df-eu 2559  df-clel 2806  df-ral 3058  df-rex 3067  df-rmo 3372  df-reu 3373
This theorem is referenced by:  reuind  3747  oawordeulem  8568  fin23lem23  10343  nqereu  10946  receu  11883  lbreu  12188  cju  12232  fprodser  15919  divalglem9  16371  ndvdssub  16379  qredeu  16622  pj1eu  19644  efgredeu  19700  lspsneu  21004  qtopeu  23613  qtophmeo  23714  minveclem7  25356  ig1peu  26102  coeeu  26152  plydivalg  26227  nocvxmin  27704  hlcgreu  28415  mirreu3  28451  trgcopyeu  28603  axcontlem2  28769  umgr2edg1  29017  umgr2edgneu  29020  usgredgreu  29024  uspgredg2vtxeu  29026  4cycl2vnunb  30093  frgr2wwlk1  30132  minvecolem7  30686  hlimreui  31042  riesz4i  31866  cdjreui  32235  xreceu  32639  cvmseu  34880  segconeu  35601  outsideofeu  35721  poimirlem4  37091  bfp  37291  exidu1  37323  rngoideu  37370  lshpsmreu  38575  cdleme  40027  lcfl7N  40968  mapdpg  41173  hdmap14lem6  41340  mpaaeu  42568  icceuelpart  46770  isuspgrim0lem  47163
  Copyright terms: Public domain W3C validator
OSZAR »