MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nocvxmin Structured version   Visualization version   GIF version

Theorem nocvxmin 27724
Description: Given a nonempty convex class of surreals, there is a unique birthday-minimal element of that class. Lemma 0 of [Alling] p. 185. (Contributed by Scott Fenton, 30-Jun-2011.)
Assertion
Ref Expression
nocvxmin ((𝐴 ≠ ∅ ∧ 𝐴 No ∧ ∀𝑥𝐴𝑦𝐴𝑧 No ((𝑥 <s 𝑧𝑧 <s 𝑦) → 𝑧𝐴)) → ∃!𝑤𝐴 ( bday 𝑤) = ( bday 𝐴))
Distinct variable group:   𝑤,𝐴,𝑥,𝑦,𝑧

Proof of Theorem nocvxmin
Dummy variable 𝑡 is distinct from all other variables.
StepHypRef Expression
1 imassrn 6074 . . . . . 6 ( bday 𝐴) ⊆ ran bday
2 bdayrn 27721 . . . . . 6 ran bday = On
31, 2sseqtri 4016 . . . . 5 ( bday 𝐴) ⊆ On
4 bdaydm 27720 . . . . . . . . . . 11 dom bday = No
54sseq2i 4009 . . . . . . . . . 10 (𝐴 ⊆ dom bday 𝐴 No )
6 bdayfun 27718 . . . . . . . . . . 11 Fun bday
7 funfvima2 7243 . . . . . . . . . . 11 ((Fun bday 𝐴 ⊆ dom bday ) → (𝑥𝐴 → ( bday 𝑥) ∈ ( bday 𝐴)))
86, 7mpan 689 . . . . . . . . . 10 (𝐴 ⊆ dom bday → (𝑥𝐴 → ( bday 𝑥) ∈ ( bday 𝐴)))
95, 8sylbir 234 . . . . . . . . 9 (𝐴 No → (𝑥𝐴 → ( bday 𝑥) ∈ ( bday 𝐴)))
10 elex2 2808 . . . . . . . . 9 (( bday 𝑥) ∈ ( bday 𝐴) → ∃𝑤 𝑤 ∈ ( bday 𝐴))
119, 10syl6 35 . . . . . . . 8 (𝐴 No → (𝑥𝐴 → ∃𝑤 𝑤 ∈ ( bday 𝐴)))
1211exlimdv 1929 . . . . . . 7 (𝐴 No → (∃𝑥 𝑥𝐴 → ∃𝑤 𝑤 ∈ ( bday 𝐴)))
13 n0 4347 . . . . . . 7 (𝐴 ≠ ∅ ↔ ∃𝑥 𝑥𝐴)
14 n0 4347 . . . . . . 7 (( bday 𝐴) ≠ ∅ ↔ ∃𝑤 𝑤 ∈ ( bday 𝐴))
1512, 13, 143imtr4g 296 . . . . . 6 (𝐴 No → (𝐴 ≠ ∅ → ( bday 𝐴) ≠ ∅))
1615impcom 407 . . . . 5 ((𝐴 ≠ ∅ ∧ 𝐴 No ) → ( bday 𝐴) ≠ ∅)
17 onint 7793 . . . . 5 ((( bday 𝐴) ⊆ On ∧ ( bday 𝐴) ≠ ∅) → ( bday 𝐴) ∈ ( bday 𝐴))
183, 16, 17sylancr 586 . . . 4 ((𝐴 ≠ ∅ ∧ 𝐴 No ) → ( bday 𝐴) ∈ ( bday 𝐴))
19 bdayfn 27719 . . . . . 6 bday Fn No
20 fvelimab 6971 . . . . . 6 (( bday Fn No 𝐴 No ) → ( ( bday 𝐴) ∈ ( bday 𝐴) ↔ ∃𝑤𝐴 ( bday 𝑤) = ( bday 𝐴)))
2119, 20mpan 689 . . . . 5 (𝐴 No → ( ( bday 𝐴) ∈ ( bday 𝐴) ↔ ∃𝑤𝐴 ( bday 𝑤) = ( bday 𝐴)))
2221adantl 481 . . . 4 ((𝐴 ≠ ∅ ∧ 𝐴 No ) → ( ( bday 𝐴) ∈ ( bday 𝐴) ↔ ∃𝑤𝐴 ( bday 𝑤) = ( bday 𝐴)))
2318, 22mpbid 231 . . 3 ((𝐴 ≠ ∅ ∧ 𝐴 No ) → ∃𝑤𝐴 ( bday 𝑤) = ( bday 𝐴))
24233adant3 1130 . 2 ((𝐴 ≠ ∅ ∧ 𝐴 No ∧ ∀𝑥𝐴𝑦𝐴𝑧 No ((𝑥 <s 𝑧𝑧 <s 𝑦) → 𝑧𝐴)) → ∃𝑤𝐴 ( bday 𝑤) = ( bday 𝐴))
25 ssel 3973 . . . . . . . . 9 (𝐴 No → (𝑤𝐴𝑤 No ))
26 ssel 3973 . . . . . . . . 9 (𝐴 No → (𝑡𝐴𝑡 No ))
2725, 26anim12d 608 . . . . . . . 8 (𝐴 No → ((𝑤𝐴𝑡𝐴) → (𝑤 No 𝑡 No )))
2827imp 406 . . . . . . 7 ((𝐴 No ∧ (𝑤𝐴𝑡𝐴)) → (𝑤 No 𝑡 No ))
2928ad2ant2r 746 . . . . . 6 (((𝐴 No ∧ ∀𝑥𝐴𝑦𝐴𝑧 No ((𝑥 <s 𝑧𝑧 <s 𝑦) → 𝑧𝐴)) ∧ ((𝑤𝐴𝑡𝐴) ∧ (( bday 𝑤) = ( bday 𝐴) ∧ ( bday 𝑡) = ( bday 𝐴)))) → (𝑤 No 𝑡 No ))
30 nocvxminlem 27723 . . . . . . 7 ((𝐴 No ∧ ∀𝑥𝐴𝑦𝐴𝑧 No ((𝑥 <s 𝑧𝑧 <s 𝑦) → 𝑧𝐴)) → (((𝑤𝐴𝑡𝐴) ∧ (( bday 𝑤) = ( bday 𝐴) ∧ ( bday 𝑡) = ( bday 𝐴))) → ¬ 𝑤 <s 𝑡))
3130imp 406 . . . . . 6 (((𝐴 No ∧ ∀𝑥𝐴𝑦𝐴𝑧 No ((𝑥 <s 𝑧𝑧 <s 𝑦) → 𝑧𝐴)) ∧ ((𝑤𝐴𝑡𝐴) ∧ (( bday 𝑤) = ( bday 𝐴) ∧ ( bday 𝑡) = ( bday 𝐴)))) → ¬ 𝑤 <s 𝑡)
32 ancom 460 . . . . . . . . 9 ((𝑤𝐴𝑡𝐴) ↔ (𝑡𝐴𝑤𝐴))
33 ancom 460 . . . . . . . . 9 ((( bday 𝑤) = ( bday 𝐴) ∧ ( bday 𝑡) = ( bday 𝐴)) ↔ (( bday 𝑡) = ( bday 𝐴) ∧ ( bday 𝑤) = ( bday 𝐴)))
3432, 33anbi12i 627 . . . . . . . 8 (((𝑤𝐴𝑡𝐴) ∧ (( bday 𝑤) = ( bday 𝐴) ∧ ( bday 𝑡) = ( bday 𝐴))) ↔ ((𝑡𝐴𝑤𝐴) ∧ (( bday 𝑡) = ( bday 𝐴) ∧ ( bday 𝑤) = ( bday 𝐴))))
35 nocvxminlem 27723 . . . . . . . 8 ((𝐴 No ∧ ∀𝑥𝐴𝑦𝐴𝑧 No ((𝑥 <s 𝑧𝑧 <s 𝑦) → 𝑧𝐴)) → (((𝑡𝐴𝑤𝐴) ∧ (( bday 𝑡) = ( bday 𝐴) ∧ ( bday 𝑤) = ( bday 𝐴))) → ¬ 𝑡 <s 𝑤))
3634, 35biimtrid 241 . . . . . . 7 ((𝐴 No ∧ ∀𝑥𝐴𝑦𝐴𝑧 No ((𝑥 <s 𝑧𝑧 <s 𝑦) → 𝑧𝐴)) → (((𝑤𝐴𝑡𝐴) ∧ (( bday 𝑤) = ( bday 𝐴) ∧ ( bday 𝑡) = ( bday 𝐴))) → ¬ 𝑡 <s 𝑤))
3736imp 406 . . . . . 6 (((𝐴 No ∧ ∀𝑥𝐴𝑦𝐴𝑧 No ((𝑥 <s 𝑧𝑧 <s 𝑦) → 𝑧𝐴)) ∧ ((𝑤𝐴𝑡𝐴) ∧ (( bday 𝑤) = ( bday 𝐴) ∧ ( bday 𝑡) = ( bday 𝐴)))) → ¬ 𝑡 <s 𝑤)
38 slttrieq2 27696 . . . . . . 7 ((𝑤 No 𝑡 No ) → (𝑤 = 𝑡 ↔ (¬ 𝑤 <s 𝑡 ∧ ¬ 𝑡 <s 𝑤)))
3938biimpar 477 . . . . . 6 (((𝑤 No 𝑡 No ) ∧ (¬ 𝑤 <s 𝑡 ∧ ¬ 𝑡 <s 𝑤)) → 𝑤 = 𝑡)
4029, 31, 37, 39syl12anc 836 . . . . 5 (((𝐴 No ∧ ∀𝑥𝐴𝑦𝐴𝑧 No ((𝑥 <s 𝑧𝑧 <s 𝑦) → 𝑧𝐴)) ∧ ((𝑤𝐴𝑡𝐴) ∧ (( bday 𝑤) = ( bday 𝐴) ∧ ( bday 𝑡) = ( bday 𝐴)))) → 𝑤 = 𝑡)
4140exp32 420 . . . 4 ((𝐴 No ∧ ∀𝑥𝐴𝑦𝐴𝑧 No ((𝑥 <s 𝑧𝑧 <s 𝑦) → 𝑧𝐴)) → ((𝑤𝐴𝑡𝐴) → ((( bday 𝑤) = ( bday 𝐴) ∧ ( bday 𝑡) = ( bday 𝐴)) → 𝑤 = 𝑡)))
4241ralrimivv 3195 . . 3 ((𝐴 No ∧ ∀𝑥𝐴𝑦𝐴𝑧 No ((𝑥 <s 𝑧𝑧 <s 𝑦) → 𝑧𝐴)) → ∀𝑤𝐴𝑡𝐴 ((( bday 𝑤) = ( bday 𝐴) ∧ ( bday 𝑡) = ( bday 𝐴)) → 𝑤 = 𝑡))
43423adant1 1128 . 2 ((𝐴 ≠ ∅ ∧ 𝐴 No ∧ ∀𝑥𝐴𝑦𝐴𝑧 No ((𝑥 <s 𝑧𝑧 <s 𝑦) → 𝑧𝐴)) → ∀𝑤𝐴𝑡𝐴 ((( bday 𝑤) = ( bday 𝐴) ∧ ( bday 𝑡) = ( bday 𝐴)) → 𝑤 = 𝑡))
44 fveqeq2 6906 . . 3 (𝑤 = 𝑡 → (( bday 𝑤) = ( bday 𝐴) ↔ ( bday 𝑡) = ( bday 𝐴)))
4544reu4 3726 . 2 (∃!𝑤𝐴 ( bday 𝑤) = ( bday 𝐴) ↔ (∃𝑤𝐴 ( bday 𝑤) = ( bday 𝐴) ∧ ∀𝑤𝐴𝑡𝐴 ((( bday 𝑤) = ( bday 𝐴) ∧ ( bday 𝑡) = ( bday 𝐴)) → 𝑤 = 𝑡)))
4624, 43, 45sylanbrc 582 1 ((𝐴 ≠ ∅ ∧ 𝐴 No ∧ ∀𝑥𝐴𝑦𝐴𝑧 No ((𝑥 <s 𝑧𝑧 <s 𝑦) → 𝑧𝐴)) → ∃!𝑤𝐴 ( bday 𝑤) = ( bday 𝐴))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 205  wa 395  w3a 1085   = wceq 1534  wex 1774  wcel 2099  wne 2937  wral 3058  wrex 3067  ∃!wreu 3371  wss 3947  c0 4323   cint 4949   class class class wbr 5148  dom cdm 5678  ran crn 5679  cima 5681  Oncon0 6369  Fun wfun 6542   Fn wfn 6543  cfv 6548   No csur 27586   <s cslt 27587   bday cbday 27588
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1790  ax-4 1804  ax-5 1906  ax-6 1964  ax-7 2004  ax-8 2101  ax-9 2109  ax-10 2130  ax-11 2147  ax-12 2167  ax-ext 2699  ax-rep 5285  ax-sep 5299  ax-nul 5306  ax-pr 5429  ax-un 7740
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 847  df-3or 1086  df-3an 1087  df-tru 1537  df-fal 1547  df-ex 1775  df-nf 1779  df-sb 2061  df-mo 2530  df-eu 2559  df-clab 2706  df-cleq 2720  df-clel 2806  df-nfc 2881  df-ne 2938  df-ral 3059  df-rex 3068  df-rmo 3373  df-reu 3374  df-rab 3430  df-v 3473  df-sbc 3777  df-csb 3893  df-dif 3950  df-un 3952  df-in 3954  df-ss 3964  df-pss 3966  df-nul 4324  df-if 4530  df-pw 4605  df-sn 4630  df-pr 4632  df-tp 4634  df-op 4636  df-uni 4909  df-int 4950  df-iun 4998  df-br 5149  df-opab 5211  df-mpt 5232  df-tr 5266  df-id 5576  df-eprel 5582  df-po 5590  df-so 5591  df-fr 5633  df-we 5635  df-xp 5684  df-rel 5685  df-cnv 5686  df-co 5687  df-dm 5688  df-rn 5689  df-res 5690  df-ima 5691  df-ord 6372  df-on 6373  df-suc 6375  df-iota 6500  df-fun 6550  df-fn 6551  df-f 6552  df-f1 6553  df-fo 6554  df-f1o 6555  df-fv 6556  df-1o 8487  df-2o 8488  df-no 27589  df-slt 27590  df-bday 27591
This theorem is referenced by:  conway  27745
  Copyright terms: Public domain W3C validator
OSZAR »