MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  riiner Structured version   Visualization version   GIF version

Theorem riiner 8802
Description: The relative intersection of a family of equivalence relations is an equivalence relation. (Contributed by Mario Carneiro, 27-Sep-2015.)
Assertion
Ref Expression
riiner (∀𝑥𝐴 𝑅 Er 𝐵 → ((𝐵 × 𝐵) ∩ 𝑥𝐴 𝑅) Er 𝐵)
Distinct variable groups:   𝑥,𝐴   𝑥,𝐵
Allowed substitution hint:   𝑅(𝑥)

Proof of Theorem riiner
StepHypRef Expression
1 xpider 8800 . . 3 (𝐵 × 𝐵) Er 𝐵
2 riin0 5079 . . . . 5 (𝐴 = ∅ → ((𝐵 × 𝐵) ∩ 𝑥𝐴 𝑅) = (𝐵 × 𝐵))
32adantl 481 . . . 4 ((∀𝑥𝐴 𝑅 Er 𝐵𝐴 = ∅) → ((𝐵 × 𝐵) ∩ 𝑥𝐴 𝑅) = (𝐵 × 𝐵))
4 ereq1 8725 . . . 4 (((𝐵 × 𝐵) ∩ 𝑥𝐴 𝑅) = (𝐵 × 𝐵) → (((𝐵 × 𝐵) ∩ 𝑥𝐴 𝑅) Er 𝐵 ↔ (𝐵 × 𝐵) Er 𝐵))
53, 4syl 17 . . 3 ((∀𝑥𝐴 𝑅 Er 𝐵𝐴 = ∅) → (((𝐵 × 𝐵) ∩ 𝑥𝐴 𝑅) Er 𝐵 ↔ (𝐵 × 𝐵) Er 𝐵))
61, 5mpbiri 258 . 2 ((∀𝑥𝐴 𝑅 Er 𝐵𝐴 = ∅) → ((𝐵 × 𝐵) ∩ 𝑥𝐴 𝑅) Er 𝐵)
7 iiner 8801 . . . 4 ((𝐴 ≠ ∅ ∧ ∀𝑥𝐴 𝑅 Er 𝐵) → 𝑥𝐴 𝑅 Er 𝐵)
87ancoms 458 . . 3 ((∀𝑥𝐴 𝑅 Er 𝐵𝐴 ≠ ∅) → 𝑥𝐴 𝑅 Er 𝐵)
9 erssxp 8741 . . . . . 6 (𝑅 Er 𝐵𝑅 ⊆ (𝐵 × 𝐵))
109ralimi 3079 . . . . 5 (∀𝑥𝐴 𝑅 Er 𝐵 → ∀𝑥𝐴 𝑅 ⊆ (𝐵 × 𝐵))
11 riinn0 5080 . . . . 5 ((∀𝑥𝐴 𝑅 ⊆ (𝐵 × 𝐵) ∧ 𝐴 ≠ ∅) → ((𝐵 × 𝐵) ∩ 𝑥𝐴 𝑅) = 𝑥𝐴 𝑅)
1210, 11sylan 579 . . . 4 ((∀𝑥𝐴 𝑅 Er 𝐵𝐴 ≠ ∅) → ((𝐵 × 𝐵) ∩ 𝑥𝐴 𝑅) = 𝑥𝐴 𝑅)
13 ereq1 8725 . . . 4 (((𝐵 × 𝐵) ∩ 𝑥𝐴 𝑅) = 𝑥𝐴 𝑅 → (((𝐵 × 𝐵) ∩ 𝑥𝐴 𝑅) Er 𝐵 𝑥𝐴 𝑅 Er 𝐵))
1412, 13syl 17 . . 3 ((∀𝑥𝐴 𝑅 Er 𝐵𝐴 ≠ ∅) → (((𝐵 × 𝐵) ∩ 𝑥𝐴 𝑅) Er 𝐵 𝑥𝐴 𝑅 Er 𝐵))
158, 14mpbird 257 . 2 ((∀𝑥𝐴 𝑅 Er 𝐵𝐴 ≠ ∅) → ((𝐵 × 𝐵) ∩ 𝑥𝐴 𝑅) Er 𝐵)
166, 15pm2.61dane 3025 1 (∀𝑥𝐴 𝑅 Er 𝐵 → ((𝐵 × 𝐵) ∩ 𝑥𝐴 𝑅) Er 𝐵)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 395   = wceq 1534  wne 2936  wral 3057  cin 3944  wss 3945  c0 4318   ciin 4992   × cxp 5670   Er wer 8715
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1790  ax-4 1804  ax-5 1906  ax-6 1964  ax-7 2004  ax-8 2101  ax-9 2109  ax-10 2130  ax-11 2147  ax-12 2167  ax-ext 2699  ax-sep 5293  ax-nul 5300  ax-pr 5423
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 847  df-3an 1087  df-tru 1537  df-fal 1547  df-ex 1775  df-nf 1779  df-sb 2061  df-mo 2530  df-eu 2559  df-clab 2706  df-cleq 2720  df-clel 2806  df-nfc 2881  df-ne 2937  df-ral 3058  df-rex 3067  df-rab 3429  df-v 3472  df-dif 3948  df-un 3950  df-in 3952  df-ss 3962  df-nul 4319  df-if 4525  df-sn 4625  df-pr 4627  df-op 4631  df-iin 4994  df-br 5143  df-opab 5205  df-xp 5678  df-rel 5679  df-cnv 5680  df-co 5681  df-dm 5682  df-rn 5683  df-er 8718
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator
OSZAR »