MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  s3eq2 Structured version   Visualization version   GIF version

Theorem s3eq2 14851
Description: Equality theorem for a length 3 word for the second symbol. (Contributed by AV, 4-Jan-2022.)
Assertion
Ref Expression
s3eq2 (𝐵 = 𝐷 → ⟨“𝐴𝐵𝐶”⟩ = ⟨“𝐴𝐷𝐶”⟩)

Proof of Theorem s3eq2
StepHypRef Expression
1 eqidd 2726 . 2 (𝐵 = 𝐷𝐴 = 𝐴)
2 id 22 . 2 (𝐵 = 𝐷𝐵 = 𝐷)
3 eqidd 2726 . 2 (𝐵 = 𝐷𝐶 = 𝐶)
41, 2, 3s3eqd 14845 1 (𝐵 = 𝐷 → ⟨“𝐴𝐵𝐶”⟩ = ⟨“𝐴𝐷𝐶”⟩)
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1533  ⟨“cs3 14823
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-ext 2696
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 846  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-sb 2060  df-clab 2703  df-cleq 2717  df-clel 2802  df-rab 3420  df-v 3465  df-dif 3942  df-un 3944  df-in 3946  df-ss 3956  df-nul 4317  df-if 4523  df-sn 4623  df-pr 4625  df-op 4629  df-uni 4902  df-br 5142  df-iota 6493  df-fv 6549  df-ov 7417  df-s1 14576  df-s2 14829  df-s3 14830
This theorem is referenced by:  tgcgrxfr  28338  isperp2  28535  elwwlks2ons3  29782  frgr2wwlk1  30155  frgr2wwlkeqm  30157  fusgr2wsp2nb  30160
  Copyright terms: Public domain W3C validator
OSZAR »