![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > s3eq2 | Structured version Visualization version GIF version |
Description: Equality theorem for a length 3 word for the second symbol. (Contributed by AV, 4-Jan-2022.) |
Ref | Expression |
---|---|
s3eq2 | ⊢ (𝐵 = 𝐷 → 〈“𝐴𝐵𝐶”〉 = 〈“𝐴𝐷𝐶”〉) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqidd 2726 | . 2 ⊢ (𝐵 = 𝐷 → 𝐴 = 𝐴) | |
2 | id 22 | . 2 ⊢ (𝐵 = 𝐷 → 𝐵 = 𝐷) | |
3 | eqidd 2726 | . 2 ⊢ (𝐵 = 𝐷 → 𝐶 = 𝐶) | |
4 | 1, 2, 3 | s3eqd 14845 | 1 ⊢ (𝐵 = 𝐷 → 〈“𝐴𝐵𝐶”〉 = 〈“𝐴𝐷𝐶”〉) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1533 〈“cs3 14823 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-ext 2696 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 846 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-sb 2060 df-clab 2703 df-cleq 2717 df-clel 2802 df-rab 3420 df-v 3465 df-dif 3942 df-un 3944 df-in 3946 df-ss 3956 df-nul 4317 df-if 4523 df-sn 4623 df-pr 4625 df-op 4629 df-uni 4902 df-br 5142 df-iota 6493 df-fv 6549 df-ov 7417 df-s1 14576 df-s2 14829 df-s3 14830 |
This theorem is referenced by: tgcgrxfr 28338 isperp2 28535 elwwlks2ons3 29782 frgr2wwlk1 30155 frgr2wwlkeqm 30157 fusgr2wsp2nb 30160 |
Copyright terms: Public domain | W3C validator |