![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > s2cld | Structured version Visualization version GIF version |
Description: A doubleton word is a word. (Contributed by Mario Carneiro, 27-Feb-2016.) |
Ref | Expression |
---|---|
s2cld.1 | ⊢ (𝜑 → 𝐴 ∈ 𝑋) |
s2cld.2 | ⊢ (𝜑 → 𝐵 ∈ 𝑋) |
Ref | Expression |
---|---|
s2cld | ⊢ (𝜑 → 〈“𝐴𝐵”〉 ∈ Word 𝑋) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-s2 14831 | . 2 ⊢ 〈“𝐴𝐵”〉 = (〈“𝐴”〉 ++ 〈“𝐵”〉) | |
2 | s2cld.1 | . . 3 ⊢ (𝜑 → 𝐴 ∈ 𝑋) | |
3 | 2 | s1cld 14585 | . 2 ⊢ (𝜑 → 〈“𝐴”〉 ∈ Word 𝑋) |
4 | s2cld.2 | . 2 ⊢ (𝜑 → 𝐵 ∈ 𝑋) | |
5 | 1, 3, 4 | cats1cld 14838 | 1 ⊢ (𝜑 → 〈“𝐴𝐵”〉 ∈ Word 𝑋) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∈ wcel 2098 Word cword 14496 〈“cs1 14577 〈“cs2 14824 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2166 ax-ext 2696 ax-rep 5280 ax-sep 5294 ax-nul 5301 ax-pow 5359 ax-pr 5423 ax-un 7738 ax-cnex 11194 ax-resscn 11195 ax-1cn 11196 ax-icn 11197 ax-addcl 11198 ax-addrcl 11199 ax-mulcl 11200 ax-mulrcl 11201 ax-mulcom 11202 ax-addass 11203 ax-mulass 11204 ax-distr 11205 ax-i2m1 11206 ax-1ne0 11207 ax-1rid 11208 ax-rnegex 11209 ax-rrecex 11210 ax-cnre 11211 ax-pre-lttri 11212 ax-pre-lttrn 11213 ax-pre-ltadd 11214 ax-pre-mulgt0 11215 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 846 df-3or 1085 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2528 df-eu 2557 df-clab 2703 df-cleq 2717 df-clel 2802 df-nfc 2877 df-ne 2931 df-nel 3037 df-ral 3052 df-rex 3061 df-reu 3365 df-rab 3420 df-v 3465 df-sbc 3769 df-csb 3885 df-dif 3942 df-un 3944 df-in 3946 df-ss 3956 df-pss 3959 df-nul 4319 df-if 4525 df-pw 4600 df-sn 4625 df-pr 4627 df-op 4631 df-uni 4904 df-int 4945 df-iun 4993 df-br 5144 df-opab 5206 df-mpt 5227 df-tr 5261 df-id 5570 df-eprel 5576 df-po 5584 df-so 5585 df-fr 5627 df-we 5629 df-xp 5678 df-rel 5679 df-cnv 5680 df-co 5681 df-dm 5682 df-rn 5683 df-res 5684 df-ima 5685 df-pred 6300 df-ord 6367 df-on 6368 df-lim 6369 df-suc 6370 df-iota 6495 df-fun 6545 df-fn 6546 df-f 6547 df-f1 6548 df-fo 6549 df-f1o 6550 df-fv 6551 df-riota 7372 df-ov 7419 df-oprab 7420 df-mpo 7421 df-om 7869 df-1st 7991 df-2nd 7992 df-frecs 8285 df-wrecs 8316 df-recs 8390 df-rdg 8429 df-1o 8485 df-er 8723 df-en 8963 df-dom 8964 df-sdom 8965 df-fin 8966 df-card 9962 df-pnf 11280 df-mnf 11281 df-xr 11282 df-ltxr 11283 df-le 11284 df-sub 11476 df-neg 11477 df-nn 12243 df-n0 12503 df-z 12589 df-uz 12853 df-fz 13517 df-fzo 13660 df-hash 14322 df-word 14497 df-concat 14553 df-s1 14578 df-s2 14831 |
This theorem is referenced by: s3cld 14855 s2cl 14861 s3co 14904 psgnunilem2 19454 efglem 19675 efgtf 19681 efgtlen 19685 efginvrel2 19686 efgredleme 19702 efgredlemc 19704 efgcpbllemb 19714 frgpuplem 19731 frgpnabllem1 19832 1wlkdlem1 29991 wlk2v2elem1 30009 s2rn 32712 cycpm2tr 32885 cycpm2cl 32886 cyc2fv1 32887 cyc2fv2 32888 cycpmco2 32899 cyc2fvx 32900 cyc3co2 32906 cyc3genpmlem 32917 cyc3genpm 32918 cyc3conja 32923 lmat22lem 33475 lmat22e11 33476 lmat22e12 33477 lmat22e21 33478 lmat22e22 33479 lmat22det 33480 fib0 34076 fib1 34077 fibp1 34078 gsumws3 43691 amgm2d 43693 amgmw2d 48349 |
Copyright terms: Public domain | W3C validator |