![]() |
Mathbox for Andrew Salmon |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > sbaniota | Structured version Visualization version GIF version |
Description: Theorem *14.26 in [WhiteheadRussell] p. 192. (Contributed by Andrew Salmon, 12-Jul-2011.) |
Ref | Expression |
---|---|
sbaniota | ⊢ (∃!𝑥𝜑 → (∃𝑥(𝜑 ∧ 𝜓) ↔ [(℩𝑥𝜑) / 𝑥]𝜓)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eupickbi 2624 | . 2 ⊢ (∃!𝑥𝜑 → (∃𝑥(𝜑 ∧ 𝜓) ↔ ∀𝑥(𝜑 → 𝜓))) | |
2 | sbiota1 44013 | . 2 ⊢ (∃!𝑥𝜑 → (∀𝑥(𝜑 → 𝜓) ↔ [(℩𝑥𝜑) / 𝑥]𝜓)) | |
3 | 1, 2 | bitrd 278 | 1 ⊢ (∃!𝑥𝜑 → (∃𝑥(𝜑 ∧ 𝜓) ↔ [(℩𝑥𝜑) / 𝑥]𝜓)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 394 ∀wal 1531 ∃wex 1773 ∃!weu 2556 [wsbc 3773 ℩cio 6499 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2166 ax-ext 2696 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 846 df-tru 1536 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2528 df-eu 2557 df-clab 2703 df-cleq 2717 df-clel 2802 df-nfc 2877 df-ral 3051 df-rex 3060 df-v 3463 df-sbc 3774 df-un 3949 df-ss 3961 df-sn 4631 df-pr 4633 df-uni 4910 df-iota 6501 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |