Users' Mathboxes Mathbox for Alan Sare < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  snelpwrVD Structured version   Visualization version   GIF version

Theorem snelpwrVD 44352
Description: Virtual deduction proof of snelpwi 5444. (Contributed by Alan Sare, 25-Aug-2011.) (Proof modification is discouraged.) (New usage is discouraged.)
Assertion
Ref Expression
snelpwrVD (𝐴𝐵 → {𝐴} ∈ 𝒫 𝐵)

Proof of Theorem snelpwrVD
StepHypRef Expression
1 snex 5432 . . 3 {𝐴} ∈ V
2 idn1 44095 . . . 4 (   𝐴𝐵   ▶   𝐴𝐵   )
3 snssi 4812 . . . 4 (𝐴𝐵 → {𝐴} ⊆ 𝐵)
42, 3e1a 44148 . . 3 (   𝐴𝐵   ▶   {𝐴} ⊆ 𝐵   )
5 elpwg 4606 . . . 4 ({𝐴} ∈ V → ({𝐴} ∈ 𝒫 𝐵 ↔ {𝐴} ⊆ 𝐵))
65biimprd 247 . . 3 ({𝐴} ∈ V → ({𝐴} ⊆ 𝐵 → {𝐴} ∈ 𝒫 𝐵))
71, 4, 6e01 44212 . 2 (   𝐴𝐵   ▶   {𝐴} ∈ 𝒫 𝐵   )
87in1 44092 1 (𝐴𝐵 → {𝐴} ∈ 𝒫 𝐵)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wcel 2098  Vcvv 3463  wss 3945  𝒫 cpw 4603  {csn 4629
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-ext 2696  ax-sep 5299  ax-nul 5306  ax-pr 5428
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 846  df-tru 1536  df-fal 1546  df-ex 1774  df-sb 2060  df-clab 2703  df-cleq 2717  df-clel 2802  df-v 3465  df-dif 3948  df-un 3950  df-ss 3962  df-nul 4324  df-pw 4605  df-sn 4630  df-pr 4632  df-vd1 44091
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator
OSZAR »