![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > sssslt2 | Structured version Visualization version GIF version |
Description: Relation between surreal set less-than and subset. (Contributed by Scott Fenton, 9-Dec-2021.) |
Ref | Expression |
---|---|
sssslt2 | ⊢ ((𝐴 <<s 𝐵 ∧ 𝐶 ⊆ 𝐵) → 𝐴 <<s 𝐶) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ssltex1 27732 | . . 3 ⊢ (𝐴 <<s 𝐵 → 𝐴 ∈ V) | |
2 | 1 | adantr 480 | . 2 ⊢ ((𝐴 <<s 𝐵 ∧ 𝐶 ⊆ 𝐵) → 𝐴 ∈ V) |
3 | ssltex2 27733 | . . . 4 ⊢ (𝐴 <<s 𝐵 → 𝐵 ∈ V) | |
4 | 3 | adantr 480 | . . 3 ⊢ ((𝐴 <<s 𝐵 ∧ 𝐶 ⊆ 𝐵) → 𝐵 ∈ V) |
5 | simpr 484 | . . 3 ⊢ ((𝐴 <<s 𝐵 ∧ 𝐶 ⊆ 𝐵) → 𝐶 ⊆ 𝐵) | |
6 | 4, 5 | ssexd 5324 | . 2 ⊢ ((𝐴 <<s 𝐵 ∧ 𝐶 ⊆ 𝐵) → 𝐶 ∈ V) |
7 | ssltss1 27734 | . . . 4 ⊢ (𝐴 <<s 𝐵 → 𝐴 ⊆ No ) | |
8 | 7 | adantr 480 | . . 3 ⊢ ((𝐴 <<s 𝐵 ∧ 𝐶 ⊆ 𝐵) → 𝐴 ⊆ No ) |
9 | ssltss2 27735 | . . . . 5 ⊢ (𝐴 <<s 𝐵 → 𝐵 ⊆ No ) | |
10 | 9 | adantr 480 | . . . 4 ⊢ ((𝐴 <<s 𝐵 ∧ 𝐶 ⊆ 𝐵) → 𝐵 ⊆ No ) |
11 | 5, 10 | sstrd 3990 | . . 3 ⊢ ((𝐴 <<s 𝐵 ∧ 𝐶 ⊆ 𝐵) → 𝐶 ⊆ No ) |
12 | ssltsep 27736 | . . . 4 ⊢ (𝐴 <<s 𝐵 → ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 𝑥 <s 𝑦) | |
13 | ssralv 4048 | . . . . 5 ⊢ (𝐶 ⊆ 𝐵 → (∀𝑦 ∈ 𝐵 𝑥 <s 𝑦 → ∀𝑦 ∈ 𝐶 𝑥 <s 𝑦)) | |
14 | 13 | ralimdv 3166 | . . . 4 ⊢ (𝐶 ⊆ 𝐵 → (∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 𝑥 <s 𝑦 → ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐶 𝑥 <s 𝑦)) |
15 | 12, 14 | mpan9 506 | . . 3 ⊢ ((𝐴 <<s 𝐵 ∧ 𝐶 ⊆ 𝐵) → ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐶 𝑥 <s 𝑦) |
16 | 8, 11, 15 | 3jca 1126 | . 2 ⊢ ((𝐴 <<s 𝐵 ∧ 𝐶 ⊆ 𝐵) → (𝐴 ⊆ No ∧ 𝐶 ⊆ No ∧ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐶 𝑥 <s 𝑦)) |
17 | brsslt 27731 | . 2 ⊢ (𝐴 <<s 𝐶 ↔ ((𝐴 ∈ V ∧ 𝐶 ∈ V) ∧ (𝐴 ⊆ No ∧ 𝐶 ⊆ No ∧ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐶 𝑥 <s 𝑦))) | |
18 | 2, 6, 16, 17 | syl21anbrc 1342 | 1 ⊢ ((𝐴 <<s 𝐵 ∧ 𝐶 ⊆ 𝐵) → 𝐴 <<s 𝐶) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1085 ∈ wcel 2099 ∀wral 3058 Vcvv 3471 ⊆ wss 3947 class class class wbr 5148 No csur 27586 <s cslt 27587 <<s csslt 27726 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1790 ax-4 1804 ax-5 1906 ax-6 1964 ax-7 2004 ax-8 2101 ax-9 2109 ax-ext 2699 ax-sep 5299 ax-nul 5306 ax-pr 5429 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 847 df-3an 1087 df-tru 1537 df-fal 1547 df-ex 1775 df-sb 2061 df-clab 2706 df-cleq 2720 df-clel 2806 df-ral 3059 df-rex 3068 df-rab 3430 df-v 3473 df-dif 3950 df-un 3952 df-in 3954 df-ss 3964 df-nul 4324 df-if 4530 df-sn 4630 df-pr 4632 df-op 4636 df-br 5149 df-opab 5211 df-xp 5684 df-sslt 27727 |
This theorem is referenced by: scutun12 27756 |
Copyright terms: Public domain | W3C validator |