![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > ssltss2 | Structured version Visualization version GIF version |
Description: The second argument of surreal set is a set of surreals. (Contributed by Scott Fenton, 8-Dec-2021.) |
Ref | Expression |
---|---|
ssltss2 | ⊢ (𝐴 <<s 𝐵 → 𝐵 ⊆ No ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | brsslt 27731 | . 2 ⊢ (𝐴 <<s 𝐵 ↔ ((𝐴 ∈ V ∧ 𝐵 ∈ V) ∧ (𝐴 ⊆ No ∧ 𝐵 ⊆ No ∧ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 𝑥 <s 𝑦))) | |
2 | simpr2 1193 | . 2 ⊢ (((𝐴 ∈ V ∧ 𝐵 ∈ V) ∧ (𝐴 ⊆ No ∧ 𝐵 ⊆ No ∧ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 𝑥 <s 𝑦)) → 𝐵 ⊆ No ) | |
3 | 1, 2 | sylbi 216 | 1 ⊢ (𝐴 <<s 𝐵 → 𝐵 ⊆ No ) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1085 ∈ wcel 2099 ∀wral 3058 Vcvv 3471 ⊆ wss 3947 class class class wbr 5148 No csur 27586 <s cslt 27587 <<s csslt 27726 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1790 ax-4 1804 ax-5 1906 ax-6 1964 ax-7 2004 ax-8 2101 ax-9 2109 ax-ext 2699 ax-sep 5299 ax-nul 5306 ax-pr 5429 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 847 df-3an 1087 df-tru 1537 df-fal 1547 df-ex 1775 df-sb 2061 df-clab 2706 df-cleq 2720 df-clel 2806 df-ral 3059 df-rex 3068 df-rab 3430 df-v 3473 df-dif 3950 df-un 3952 df-in 3954 df-ss 3964 df-nul 4324 df-if 4530 df-sn 4630 df-pr 4632 df-op 4636 df-br 5149 df-opab 5211 df-xp 5684 df-sslt 27727 |
This theorem is referenced by: sssslt1 27741 sssslt2 27742 conway 27745 sslttr 27753 ssltun1 27754 ssltun2 27755 etasslt 27759 slerec 27765 sltrec 27766 cofsslt 27851 coinitsslt 27852 cofcut1 27853 cofcutr 27857 cutlt 27865 addsuniflem 27931 negsunif 27980 ssltmul1 28060 ssltmul2 28061 mulsuniflem 28062 mulsunif2lem 28082 precsexlem11 28128 renegscl 28239 |
Copyright terms: Public domain | W3C validator |