MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  sslttr Structured version   Visualization version   GIF version

Theorem sslttr 27837
Description: Transitive law for surreal set less-than. (Contributed by Scott Fenton, 9-Dec-2021.)
Assertion
Ref Expression
sslttr ((𝐴 <<s 𝐵𝐵 <<s 𝐶𝐵 ≠ ∅) → 𝐴 <<s 𝐶)

Proof of Theorem sslttr
Dummy variables 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 n0 4349 . . 3 (𝐵 ≠ ∅ ↔ ∃𝑦 𝑦𝐵)
2 ssltex1 27816 . . . . . . 7 (𝐴 <<s 𝐵𝐴 ∈ V)
323ad2ant2 1131 . . . . . 6 ((𝑦𝐵𝐴 <<s 𝐵𝐵 <<s 𝐶) → 𝐴 ∈ V)
4 ssltex2 27817 . . . . . . 7 (𝐵 <<s 𝐶𝐶 ∈ V)
543ad2ant3 1132 . . . . . 6 ((𝑦𝐵𝐴 <<s 𝐵𝐵 <<s 𝐶) → 𝐶 ∈ V)
6 ssltss1 27818 . . . . . . 7 (𝐴 <<s 𝐵𝐴 No )
763ad2ant2 1131 . . . . . 6 ((𝑦𝐵𝐴 <<s 𝐵𝐵 <<s 𝐶) → 𝐴 No )
8 ssltss2 27819 . . . . . . 7 (𝐵 <<s 𝐶𝐶 No )
983ad2ant3 1132 . . . . . 6 ((𝑦𝐵𝐴 <<s 𝐵𝐵 <<s 𝐶) → 𝐶 No )
1073ad2ant1 1130 . . . . . . . 8 (((𝑦𝐵𝐴 <<s 𝐵𝐵 <<s 𝐶) ∧ 𝑥𝐴𝑧𝐶) → 𝐴 No )
11 simp2 1134 . . . . . . . 8 (((𝑦𝐵𝐴 <<s 𝐵𝐵 <<s 𝐶) ∧ 𝑥𝐴𝑧𝐶) → 𝑥𝐴)
1210, 11sseldd 3980 . . . . . . 7 (((𝑦𝐵𝐴 <<s 𝐵𝐵 <<s 𝐶) ∧ 𝑥𝐴𝑧𝐶) → 𝑥 No )
13 ssltss2 27819 . . . . . . . . . 10 (𝐴 <<s 𝐵𝐵 No )
14133ad2ant2 1131 . . . . . . . . 9 ((𝑦𝐵𝐴 <<s 𝐵𝐵 <<s 𝐶) → 𝐵 No )
15143ad2ant1 1130 . . . . . . . 8 (((𝑦𝐵𝐴 <<s 𝐵𝐵 <<s 𝐶) ∧ 𝑥𝐴𝑧𝐶) → 𝐵 No )
16 simp11 1200 . . . . . . . 8 (((𝑦𝐵𝐴 <<s 𝐵𝐵 <<s 𝐶) ∧ 𝑥𝐴𝑧𝐶) → 𝑦𝐵)
1715, 16sseldd 3980 . . . . . . 7 (((𝑦𝐵𝐴 <<s 𝐵𝐵 <<s 𝐶) ∧ 𝑥𝐴𝑧𝐶) → 𝑦 No )
1893ad2ant1 1130 . . . . . . . 8 (((𝑦𝐵𝐴 <<s 𝐵𝐵 <<s 𝐶) ∧ 𝑥𝐴𝑧𝐶) → 𝐶 No )
19 simp3 1135 . . . . . . . 8 (((𝑦𝐵𝐴 <<s 𝐵𝐵 <<s 𝐶) ∧ 𝑥𝐴𝑧𝐶) → 𝑧𝐶)
2018, 19sseldd 3980 . . . . . . 7 (((𝑦𝐵𝐴 <<s 𝐵𝐵 <<s 𝐶) ∧ 𝑥𝐴𝑧𝐶) → 𝑧 No )
21 simp12 1201 . . . . . . . 8 (((𝑦𝐵𝐴 <<s 𝐵𝐵 <<s 𝐶) ∧ 𝑥𝐴𝑧𝐶) → 𝐴 <<s 𝐵)
2221, 11, 16ssltsepcd 27824 . . . . . . 7 (((𝑦𝐵𝐴 <<s 𝐵𝐵 <<s 𝐶) ∧ 𝑥𝐴𝑧𝐶) → 𝑥 <s 𝑦)
23 simp13 1202 . . . . . . . 8 (((𝑦𝐵𝐴 <<s 𝐵𝐵 <<s 𝐶) ∧ 𝑥𝐴𝑧𝐶) → 𝐵 <<s 𝐶)
2423, 16, 19ssltsepcd 27824 . . . . . . 7 (((𝑦𝐵𝐴 <<s 𝐵𝐵 <<s 𝐶) ∧ 𝑥𝐴𝑧𝐶) → 𝑦 <s 𝑧)
2512, 17, 20, 22, 24slttrd 27789 . . . . . 6 (((𝑦𝐵𝐴 <<s 𝐵𝐵 <<s 𝐶) ∧ 𝑥𝐴𝑧𝐶) → 𝑥 <s 𝑧)
263, 5, 7, 9, 25ssltd 27821 . . . . 5 ((𝑦𝐵𝐴 <<s 𝐵𝐵 <<s 𝐶) → 𝐴 <<s 𝐶)
27263exp 1116 . . . 4 (𝑦𝐵 → (𝐴 <<s 𝐵 → (𝐵 <<s 𝐶𝐴 <<s 𝐶)))
2827exlimiv 1926 . . 3 (∃𝑦 𝑦𝐵 → (𝐴 <<s 𝐵 → (𝐵 <<s 𝐶𝐴 <<s 𝐶)))
291, 28sylbi 216 . 2 (𝐵 ≠ ∅ → (𝐴 <<s 𝐵 → (𝐵 <<s 𝐶𝐴 <<s 𝐶)))
30293imp231 1110 1 ((𝐴 <<s 𝐵𝐵 <<s 𝐶𝐵 ≠ ∅) → 𝐴 <<s 𝐶)
Colors of variables: wff setvar class
Syntax hints:  wi 4  w3a 1084  wex 1774  wcel 2099  wne 2930  Vcvv 3462  wss 3947  c0 4325   class class class wbr 5153   No csur 27669   <<s csslt 27810
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1790  ax-4 1804  ax-5 1906  ax-6 1964  ax-7 2004  ax-8 2101  ax-9 2109  ax-10 2130  ax-11 2147  ax-12 2167  ax-ext 2697  ax-sep 5304  ax-nul 5311  ax-pr 5433
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 846  df-3or 1085  df-3an 1086  df-tru 1537  df-fal 1547  df-ex 1775  df-nf 1779  df-sb 2061  df-mo 2529  df-eu 2558  df-clab 2704  df-cleq 2718  df-clel 2803  df-nfc 2878  df-ne 2931  df-ral 3052  df-rex 3061  df-rab 3420  df-v 3464  df-sbc 3777  df-csb 3893  df-dif 3950  df-un 3952  df-in 3954  df-ss 3964  df-pss 3967  df-nul 4326  df-if 4534  df-pw 4609  df-sn 4634  df-pr 4636  df-tp 4638  df-op 4640  df-uni 4914  df-br 5154  df-opab 5216  df-mpt 5237  df-tr 5271  df-id 5580  df-eprel 5586  df-po 5594  df-so 5595  df-fr 5637  df-we 5639  df-xp 5688  df-rel 5689  df-cnv 5690  df-co 5691  df-dm 5692  df-rn 5693  df-res 5694  df-ima 5695  df-ord 6379  df-on 6380  df-suc 6382  df-iota 6506  df-fun 6556  df-fn 6557  df-f 6558  df-fv 6562  df-1o 8496  df-2o 8497  df-no 27672  df-slt 27673  df-sslt 27811
This theorem is referenced by:  scutun12  27840  scutbdaylt  27848  cuteq0  27862  cuteq1  27863  lltropt  27896  cofcut1  27937  addscut2  27993  sleadd1  28003  addsuniflem  28015  addsasslem1  28017  addsasslem2  28018  negscut2  28049  mulscut2  28134
  Copyright terms: Public domain W3C validator
OSZAR »