![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > uhgrss | Structured version Visualization version GIF version |
Description: An edge is a subset of vertices. (Contributed by Alexander van der Vekens, 26-Dec-2017.) (Revised by AV, 18-Jan-2020.) |
Ref | Expression |
---|---|
uhgrf.v | ⊢ 𝑉 = (Vtx‘𝐺) |
uhgrf.e | ⊢ 𝐸 = (iEdg‘𝐺) |
Ref | Expression |
---|---|
uhgrss | ⊢ ((𝐺 ∈ UHGraph ∧ 𝐹 ∈ dom 𝐸) → (𝐸‘𝐹) ⊆ 𝑉) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | uhgrf.v | . . . . 5 ⊢ 𝑉 = (Vtx‘𝐺) | |
2 | uhgrf.e | . . . . 5 ⊢ 𝐸 = (iEdg‘𝐺) | |
3 | 1, 2 | uhgrf 28888 | . . . 4 ⊢ (𝐺 ∈ UHGraph → 𝐸:dom 𝐸⟶(𝒫 𝑉 ∖ {∅})) |
4 | 3 | ffvelcdmda 7094 | . . 3 ⊢ ((𝐺 ∈ UHGraph ∧ 𝐹 ∈ dom 𝐸) → (𝐸‘𝐹) ∈ (𝒫 𝑉 ∖ {∅})) |
5 | 4 | eldifad 3959 | . 2 ⊢ ((𝐺 ∈ UHGraph ∧ 𝐹 ∈ dom 𝐸) → (𝐸‘𝐹) ∈ 𝒫 𝑉) |
6 | 5 | elpwid 4612 | 1 ⊢ ((𝐺 ∈ UHGraph ∧ 𝐹 ∈ dom 𝐸) → (𝐸‘𝐹) ⊆ 𝑉) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 = wceq 1534 ∈ wcel 2099 ∖ cdif 3944 ⊆ wss 3947 ∅c0 4323 𝒫 cpw 4603 {csn 4629 dom cdm 5678 ‘cfv 6548 Vtxcvtx 28822 iEdgciedg 28823 UHGraphcuhgr 28882 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1790 ax-4 1804 ax-5 1906 ax-6 1964 ax-7 2004 ax-8 2101 ax-9 2109 ax-10 2130 ax-12 2167 ax-ext 2699 ax-sep 5299 ax-nul 5306 ax-pr 5429 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 847 df-3an 1087 df-tru 1537 df-fal 1547 df-ex 1775 df-nf 1779 df-sb 2061 df-mo 2530 df-eu 2559 df-clab 2706 df-cleq 2720 df-clel 2806 df-ne 2938 df-ral 3059 df-rex 3068 df-rab 3430 df-v 3473 df-sbc 3777 df-dif 3950 df-un 3952 df-in 3954 df-ss 3964 df-nul 4324 df-if 4530 df-pw 4605 df-sn 4630 df-pr 4632 df-op 4636 df-uni 4909 df-br 5149 df-opab 5211 df-id 5576 df-xp 5684 df-rel 5685 df-cnv 5686 df-co 5687 df-dm 5688 df-rn 5689 df-iota 6500 df-fun 6550 df-fn 6551 df-f 6552 df-fv 6556 df-uhgr 28884 |
This theorem is referenced by: lpvtx 28894 umgredgprv 28933 uhgrspansubgrlem 29116 uhgrspan1 29129 grimidvtxedg 47174 grimcnv 47177 ushggricedg 47193 |
Copyright terms: Public domain | W3C validator |