![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > unexd | Structured version Visualization version GIF version |
Description: The union of two sets is a set. (Contributed by SN, 16-Jul-2024.) |
Ref | Expression |
---|---|
unexd.1 | ⊢ (𝜑 → 𝐴 ∈ 𝑉) |
unexd.2 | ⊢ (𝜑 → 𝐵 ∈ 𝑊) |
Ref | Expression |
---|---|
unexd | ⊢ (𝜑 → (𝐴 ∪ 𝐵) ∈ V) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | unexd.1 | . 2 ⊢ (𝜑 → 𝐴 ∈ 𝑉) | |
2 | unexd.2 | . 2 ⊢ (𝜑 → 𝐵 ∈ 𝑊) | |
3 | unexg 7751 | . 2 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → (𝐴 ∪ 𝐵) ∈ V) | |
4 | 1, 2, 3 | syl2anc 583 | 1 ⊢ (𝜑 → (𝐴 ∪ 𝐵) ∈ V) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∈ wcel 2099 Vcvv 3471 ∪ cun 3945 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1790 ax-4 1804 ax-5 1906 ax-6 1964 ax-7 2004 ax-8 2101 ax-9 2109 ax-ext 2699 ax-sep 5299 ax-nul 5306 ax-pr 5429 ax-un 7740 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 847 df-tru 1537 df-fal 1547 df-ex 1775 df-sb 2061 df-clab 2706 df-cleq 2720 df-clel 2806 df-rab 3430 df-v 3473 df-dif 3950 df-un 3952 df-in 3954 df-ss 3964 df-nul 4324 df-sn 4630 df-pr 4632 df-uni 4909 |
This theorem is referenced by: sexp2 8151 sexp3 8158 ssltun1 27754 ssltun2 27755 addsproplem2 27900 addsuniflem 27931 ssltmul1 28060 ssltmul2 28061 precsexlem11 28128 elrspunsn 33158 ofun 41727 tfsconcatun 42766 rclexi 43045 rtrclexlem 43046 trclubgNEW 43048 cnvrcl0 43055 dfrtrcl5 43059 iunrelexp0 43132 relexpmulg 43140 relexp01min 43143 |
Copyright terms: Public domain | W3C validator |