![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > sqxpexg | Structured version Visualization version GIF version |
Description: The Cartesian square of a set is a set. (Contributed by AV, 13-Jan-2020.) |
Ref | Expression |
---|---|
sqxpexg | ⊢ (𝐴 ∈ 𝑉 → (𝐴 × 𝐴) ∈ V) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | xpexg 7758 | . 2 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐴 ∈ 𝑉) → (𝐴 × 𝐴) ∈ V) | |
2 | 1 | anidms 565 | 1 ⊢ (𝐴 ∈ 𝑉 → (𝐴 × 𝐴) ∈ V) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∈ wcel 2098 Vcvv 3473 × cxp 5680 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-ext 2699 ax-sep 5303 ax-nul 5310 ax-pow 5369 ax-pr 5433 ax-un 7746 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 846 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-sb 2060 df-clab 2706 df-cleq 2720 df-clel 2806 df-ral 3059 df-rex 3068 df-rab 3431 df-v 3475 df-dif 3952 df-un 3954 df-in 3956 df-ss 3966 df-nul 4327 df-if 4533 df-pw 4608 df-sn 4633 df-pr 4635 df-op 4639 df-uni 4913 df-opab 5215 df-xp 5688 df-rel 5689 |
This theorem is referenced by: resiexg 7926 erex 8755 hartogslem2 9574 harwdom 9622 dfac8b 10062 ac10ct 10065 canthwe 10682 cicer 17796 ssclem 17809 ipolerval 18531 dfrngc2 20568 dfringc2 20597 rngcresringcat 20609 mat0op 22341 matecl 22347 matlmod 22351 mattposvs 22377 ustval 24127 isust 24128 restutopopn 24163 ressuss 24187 ispsmet 24230 ismet 24249 isxmet 24250 satef 35059 satefvfmla0 35061 satefvfmla1 35068 fin2so 37113 rtrclexlem 43077 isclintop 47347 isassintop 47350 rngccofvalALTV 47410 ringccofvalALTV 47444 2arymaptf 47803 |
Copyright terms: Public domain | W3C validator |