![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > mattposvs | Structured version Visualization version GIF version |
Description: The transposition of a matrix multiplied with a scalar equals the transposed matrix multiplied with the scalar, see also the statement in [Lang] p. 505. (Contributed by Stefan O'Rear, 17-Jul-2018.) |
Ref | Expression |
---|---|
mattposvs.a | ⊢ 𝐴 = (𝑁 Mat 𝑅) |
mattposvs.b | ⊢ 𝐵 = (Base‘𝐴) |
mattposvs.k | ⊢ 𝐾 = (Base‘𝑅) |
mattposvs.v | ⊢ · = ( ·𝑠 ‘𝐴) |
Ref | Expression |
---|---|
mattposvs | ⊢ ((𝑋 ∈ 𝐾 ∧ 𝑌 ∈ 𝐵) → tpos (𝑋 · 𝑌) = (𝑋 · tpos 𝑌)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | mattposvs.a | . . . . . . . . 9 ⊢ 𝐴 = (𝑁 Mat 𝑅) | |
2 | mattposvs.b | . . . . . . . . 9 ⊢ 𝐵 = (Base‘𝐴) | |
3 | 1, 2 | matrcl 22340 | . . . . . . . 8 ⊢ (𝑌 ∈ 𝐵 → (𝑁 ∈ Fin ∧ 𝑅 ∈ V)) |
4 | 3 | simpld 493 | . . . . . . 7 ⊢ (𝑌 ∈ 𝐵 → 𝑁 ∈ Fin) |
5 | sqxpexg 7765 | . . . . . . 7 ⊢ (𝑁 ∈ Fin → (𝑁 × 𝑁) ∈ V) | |
6 | 4, 5 | syl 17 | . . . . . 6 ⊢ (𝑌 ∈ 𝐵 → (𝑁 × 𝑁) ∈ V) |
7 | snex 5437 | . . . . . 6 ⊢ {𝑋} ∈ V | |
8 | xpexg 7760 | . . . . . 6 ⊢ (((𝑁 × 𝑁) ∈ V ∧ {𝑋} ∈ V) → ((𝑁 × 𝑁) × {𝑋}) ∈ V) | |
9 | 6, 7, 8 | sylancl 584 | . . . . 5 ⊢ (𝑌 ∈ 𝐵 → ((𝑁 × 𝑁) × {𝑋}) ∈ V) |
10 | oftpos 22382 | . . . . 5 ⊢ ((((𝑁 × 𝑁) × {𝑋}) ∈ V ∧ 𝑌 ∈ 𝐵) → tpos (((𝑁 × 𝑁) × {𝑋}) ∘f (.r‘𝑅)𝑌) = (tpos ((𝑁 × 𝑁) × {𝑋}) ∘f (.r‘𝑅)tpos 𝑌)) | |
11 | 9, 10 | mpancom 686 | . . . 4 ⊢ (𝑌 ∈ 𝐵 → tpos (((𝑁 × 𝑁) × {𝑋}) ∘f (.r‘𝑅)𝑌) = (tpos ((𝑁 × 𝑁) × {𝑋}) ∘f (.r‘𝑅)tpos 𝑌)) |
12 | tposconst 8278 | . . . . 5 ⊢ tpos ((𝑁 × 𝑁) × {𝑋}) = ((𝑁 × 𝑁) × {𝑋}) | |
13 | 12 | oveq1i 7436 | . . . 4 ⊢ (tpos ((𝑁 × 𝑁) × {𝑋}) ∘f (.r‘𝑅)tpos 𝑌) = (((𝑁 × 𝑁) × {𝑋}) ∘f (.r‘𝑅)tpos 𝑌) |
14 | 11, 13 | eqtrdi 2784 | . . 3 ⊢ (𝑌 ∈ 𝐵 → tpos (((𝑁 × 𝑁) × {𝑋}) ∘f (.r‘𝑅)𝑌) = (((𝑁 × 𝑁) × {𝑋}) ∘f (.r‘𝑅)tpos 𝑌)) |
15 | 14 | adantl 480 | . 2 ⊢ ((𝑋 ∈ 𝐾 ∧ 𝑌 ∈ 𝐵) → tpos (((𝑁 × 𝑁) × {𝑋}) ∘f (.r‘𝑅)𝑌) = (((𝑁 × 𝑁) × {𝑋}) ∘f (.r‘𝑅)tpos 𝑌)) |
16 | mattposvs.k | . . . 4 ⊢ 𝐾 = (Base‘𝑅) | |
17 | mattposvs.v | . . . 4 ⊢ · = ( ·𝑠 ‘𝐴) | |
18 | eqid 2728 | . . . 4 ⊢ (.r‘𝑅) = (.r‘𝑅) | |
19 | eqid 2728 | . . . 4 ⊢ (𝑁 × 𝑁) = (𝑁 × 𝑁) | |
20 | 1, 2, 16, 17, 18, 19 | matvsca2 22358 | . . 3 ⊢ ((𝑋 ∈ 𝐾 ∧ 𝑌 ∈ 𝐵) → (𝑋 · 𝑌) = (((𝑁 × 𝑁) × {𝑋}) ∘f (.r‘𝑅)𝑌)) |
21 | 20 | tposeqd 8243 | . 2 ⊢ ((𝑋 ∈ 𝐾 ∧ 𝑌 ∈ 𝐵) → tpos (𝑋 · 𝑌) = tpos (((𝑁 × 𝑁) × {𝑋}) ∘f (.r‘𝑅)𝑌)) |
22 | 1, 2 | mattposcl 22383 | . . 3 ⊢ (𝑌 ∈ 𝐵 → tpos 𝑌 ∈ 𝐵) |
23 | 1, 2, 16, 17, 18, 19 | matvsca2 22358 | . . 3 ⊢ ((𝑋 ∈ 𝐾 ∧ tpos 𝑌 ∈ 𝐵) → (𝑋 · tpos 𝑌) = (((𝑁 × 𝑁) × {𝑋}) ∘f (.r‘𝑅)tpos 𝑌)) |
24 | 22, 23 | sylan2 591 | . 2 ⊢ ((𝑋 ∈ 𝐾 ∧ 𝑌 ∈ 𝐵) → (𝑋 · tpos 𝑌) = (((𝑁 × 𝑁) × {𝑋}) ∘f (.r‘𝑅)tpos 𝑌)) |
25 | 15, 21, 24 | 3eqtr4d 2778 | 1 ⊢ ((𝑋 ∈ 𝐾 ∧ 𝑌 ∈ 𝐵) → tpos (𝑋 · 𝑌) = (𝑋 · tpos 𝑌)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 394 = wceq 1533 ∈ wcel 2098 Vcvv 3473 {csn 4632 × cxp 5680 ‘cfv 6553 (class class class)co 7426 ∘f cof 7690 tpos ctpos 8239 Fincfn 8972 Basecbs 17189 .rcmulr 17243 ·𝑠 cvsca 17246 Mat cmat 22335 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2166 ax-ext 2699 ax-rep 5289 ax-sep 5303 ax-nul 5310 ax-pow 5369 ax-pr 5433 ax-un 7748 ax-cnex 11204 ax-resscn 11205 ax-1cn 11206 ax-icn 11207 ax-addcl 11208 ax-addrcl 11209 ax-mulcl 11210 ax-mulrcl 11211 ax-mulcom 11212 ax-addass 11213 ax-mulass 11214 ax-distr 11215 ax-i2m1 11216 ax-1ne0 11217 ax-1rid 11218 ax-rnegex 11219 ax-rrecex 11220 ax-cnre 11221 ax-pre-lttri 11222 ax-pre-lttrn 11223 ax-pre-ltadd 11224 ax-pre-mulgt0 11225 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 846 df-3or 1085 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2529 df-eu 2558 df-clab 2706 df-cleq 2720 df-clel 2806 df-nfc 2881 df-ne 2938 df-nel 3044 df-ral 3059 df-rex 3068 df-reu 3375 df-rab 3431 df-v 3475 df-sbc 3779 df-csb 3895 df-dif 3952 df-un 3954 df-in 3956 df-ss 3966 df-pss 3968 df-nul 4327 df-if 4533 df-pw 4608 df-sn 4633 df-pr 4635 df-tp 4637 df-op 4639 df-ot 4641 df-uni 4913 df-iun 5002 df-br 5153 df-opab 5215 df-mpt 5236 df-tr 5270 df-id 5580 df-eprel 5586 df-po 5594 df-so 5595 df-fr 5637 df-we 5639 df-xp 5688 df-rel 5689 df-cnv 5690 df-co 5691 df-dm 5692 df-rn 5693 df-res 5694 df-ima 5695 df-pred 6310 df-ord 6377 df-on 6378 df-lim 6379 df-suc 6380 df-iota 6505 df-fun 6555 df-fn 6556 df-f 6557 df-f1 6558 df-fo 6559 df-f1o 6560 df-fv 6561 df-riota 7382 df-ov 7429 df-oprab 7430 df-mpo 7431 df-of 7692 df-om 7879 df-1st 8001 df-2nd 8002 df-supp 8174 df-tpos 8240 df-frecs 8295 df-wrecs 8326 df-recs 8400 df-rdg 8439 df-1o 8495 df-er 8733 df-map 8855 df-ixp 8925 df-en 8973 df-dom 8974 df-sdom 8975 df-fin 8976 df-fsupp 9396 df-sup 9475 df-pnf 11290 df-mnf 11291 df-xr 11292 df-ltxr 11293 df-le 11294 df-sub 11486 df-neg 11487 df-nn 12253 df-2 12315 df-3 12316 df-4 12317 df-5 12318 df-6 12319 df-7 12320 df-8 12321 df-9 12322 df-n0 12513 df-z 12599 df-dec 12718 df-uz 12863 df-fz 13527 df-struct 17125 df-sets 17142 df-slot 17160 df-ndx 17172 df-base 17190 df-ress 17219 df-plusg 17255 df-mulr 17256 df-sca 17258 df-vsca 17259 df-ip 17260 df-tset 17261 df-ple 17262 df-ds 17264 df-hom 17266 df-cco 17267 df-0g 17432 df-prds 17438 df-pws 17440 df-sra 21072 df-rgmod 21073 df-dsmm 21680 df-frlm 21695 df-mat 22336 |
This theorem is referenced by: madulid 22575 |
Copyright terms: Public domain | W3C validator |