![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > dfrngc2 | Structured version Visualization version GIF version |
Description: Alternate definition of the category of non-unital rings (in a universe). (Contributed by AV, 16-Mar-2020.) |
Ref | Expression |
---|---|
dfrngc2.c | ⊢ 𝐶 = (RngCat‘𝑈) |
dfrngc2.u | ⊢ (𝜑 → 𝑈 ∈ 𝑉) |
dfrngc2.b | ⊢ (𝜑 → 𝐵 = (𝑈 ∩ Rng)) |
dfrngc2.h | ⊢ (𝜑 → 𝐻 = ( RngHom ↾ (𝐵 × 𝐵))) |
dfrngc2.o | ⊢ (𝜑 → · = (comp‘(ExtStrCat‘𝑈))) |
Ref | Expression |
---|---|
dfrngc2 | ⊢ (𝜑 → 𝐶 = {〈(Base‘ndx), 𝐵〉, 〈(Hom ‘ndx), 𝐻〉, 〈(comp‘ndx), · 〉}) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dfrngc2.c | . . 3 ⊢ 𝐶 = (RngCat‘𝑈) | |
2 | dfrngc2.u | . . 3 ⊢ (𝜑 → 𝑈 ∈ 𝑉) | |
3 | dfrngc2.b | . . 3 ⊢ (𝜑 → 𝐵 = (𝑈 ∩ Rng)) | |
4 | dfrngc2.h | . . 3 ⊢ (𝜑 → 𝐻 = ( RngHom ↾ (𝐵 × 𝐵))) | |
5 | 1, 2, 3, 4 | rngcval 20563 | . 2 ⊢ (𝜑 → 𝐶 = ((ExtStrCat‘𝑈) ↾cat 𝐻)) |
6 | eqid 2725 | . . 3 ⊢ ((ExtStrCat‘𝑈) ↾cat 𝐻) = ((ExtStrCat‘𝑈) ↾cat 𝐻) | |
7 | fvexd 6911 | . . 3 ⊢ (𝜑 → (ExtStrCat‘𝑈) ∈ V) | |
8 | inex1g 5320 | . . . . 5 ⊢ (𝑈 ∈ 𝑉 → (𝑈 ∩ Rng) ∈ V) | |
9 | 2, 8 | syl 17 | . . . 4 ⊢ (𝜑 → (𝑈 ∩ Rng) ∈ V) |
10 | 3, 9 | eqeltrd 2825 | . . 3 ⊢ (𝜑 → 𝐵 ∈ V) |
11 | 3, 4 | rnghmresfn 20564 | . . 3 ⊢ (𝜑 → 𝐻 Fn (𝐵 × 𝐵)) |
12 | 6, 7, 10, 11 | rescval2 17814 | . 2 ⊢ (𝜑 → ((ExtStrCat‘𝑈) ↾cat 𝐻) = (((ExtStrCat‘𝑈) ↾s 𝐵) sSet 〈(Hom ‘ndx), 𝐻〉)) |
13 | eqid 2725 | . . . 4 ⊢ (ExtStrCat‘𝑈) = (ExtStrCat‘𝑈) | |
14 | eqidd 2726 | . . . 4 ⊢ (𝜑 → (𝑥 ∈ 𝑈, 𝑦 ∈ 𝑈 ↦ ((Base‘𝑦) ↑m (Base‘𝑥))) = (𝑥 ∈ 𝑈, 𝑦 ∈ 𝑈 ↦ ((Base‘𝑦) ↑m (Base‘𝑥)))) | |
15 | dfrngc2.o | . . . . 5 ⊢ (𝜑 → · = (comp‘(ExtStrCat‘𝑈))) | |
16 | eqid 2725 | . . . . . 6 ⊢ (comp‘(ExtStrCat‘𝑈)) = (comp‘(ExtStrCat‘𝑈)) | |
17 | 13, 2, 16 | estrccofval 18122 | . . . . 5 ⊢ (𝜑 → (comp‘(ExtStrCat‘𝑈)) = (𝑣 ∈ (𝑈 × 𝑈), 𝑧 ∈ 𝑈 ↦ (𝑔 ∈ ((Base‘𝑧) ↑m (Base‘(2nd ‘𝑣))), 𝑓 ∈ ((Base‘(2nd ‘𝑣)) ↑m (Base‘(1st ‘𝑣))) ↦ (𝑔 ∘ 𝑓)))) |
18 | 15, 17 | eqtrd 2765 | . . . 4 ⊢ (𝜑 → · = (𝑣 ∈ (𝑈 × 𝑈), 𝑧 ∈ 𝑈 ↦ (𝑔 ∈ ((Base‘𝑧) ↑m (Base‘(2nd ‘𝑣))), 𝑓 ∈ ((Base‘(2nd ‘𝑣)) ↑m (Base‘(1st ‘𝑣))) ↦ (𝑔 ∘ 𝑓)))) |
19 | 13, 2, 14, 18 | estrcval 18117 | . . 3 ⊢ (𝜑 → (ExtStrCat‘𝑈) = {〈(Base‘ndx), 𝑈〉, 〈(Hom ‘ndx), (𝑥 ∈ 𝑈, 𝑦 ∈ 𝑈 ↦ ((Base‘𝑦) ↑m (Base‘𝑥)))〉, 〈(comp‘ndx), · 〉}) |
20 | mpoexga 8082 | . . . 4 ⊢ ((𝑈 ∈ 𝑉 ∧ 𝑈 ∈ 𝑉) → (𝑥 ∈ 𝑈, 𝑦 ∈ 𝑈 ↦ ((Base‘𝑦) ↑m (Base‘𝑥))) ∈ V) | |
21 | 2, 2, 20 | syl2anc 582 | . . 3 ⊢ (𝜑 → (𝑥 ∈ 𝑈, 𝑦 ∈ 𝑈 ↦ ((Base‘𝑦) ↑m (Base‘𝑥))) ∈ V) |
22 | fvexd 6911 | . . . 4 ⊢ (𝜑 → (comp‘(ExtStrCat‘𝑈)) ∈ V) | |
23 | 15, 22 | eqeltrd 2825 | . . 3 ⊢ (𝜑 → · ∈ V) |
24 | rnghmfn 20390 | . . . . . 6 ⊢ RngHom Fn (Rng × Rng) | |
25 | fnfun 6655 | . . . . . 6 ⊢ ( RngHom Fn (Rng × Rng) → Fun RngHom ) | |
26 | 24, 25 | mp1i 13 | . . . . 5 ⊢ (𝜑 → Fun RngHom ) |
27 | sqxpexg 7758 | . . . . . 6 ⊢ (𝐵 ∈ V → (𝐵 × 𝐵) ∈ V) | |
28 | 10, 27 | syl 17 | . . . . 5 ⊢ (𝜑 → (𝐵 × 𝐵) ∈ V) |
29 | resfunexg 7227 | . . . . 5 ⊢ ((Fun RngHom ∧ (𝐵 × 𝐵) ∈ V) → ( RngHom ↾ (𝐵 × 𝐵)) ∈ V) | |
30 | 26, 28, 29 | syl2anc 582 | . . . 4 ⊢ (𝜑 → ( RngHom ↾ (𝐵 × 𝐵)) ∈ V) |
31 | 4, 30 | eqeltrd 2825 | . . 3 ⊢ (𝜑 → 𝐻 ∈ V) |
32 | inss1 4227 | . . . 4 ⊢ (𝑈 ∩ Rng) ⊆ 𝑈 | |
33 | 3, 32 | eqsstrdi 4031 | . . 3 ⊢ (𝜑 → 𝐵 ⊆ 𝑈) |
34 | 19, 2, 21, 23, 31, 33 | estrres 18133 | . 2 ⊢ (𝜑 → (((ExtStrCat‘𝑈) ↾s 𝐵) sSet 〈(Hom ‘ndx), 𝐻〉) = {〈(Base‘ndx), 𝐵〉, 〈(Hom ‘ndx), 𝐻〉, 〈(comp‘ndx), · 〉}) |
35 | 5, 12, 34 | 3eqtrd 2769 | 1 ⊢ (𝜑 → 𝐶 = {〈(Base‘ndx), 𝐵〉, 〈(Hom ‘ndx), 𝐻〉, 〈(comp‘ndx), · 〉}) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1533 ∈ wcel 2098 Vcvv 3461 ∩ cin 3943 {ctp 4634 〈cop 4636 × cxp 5676 ↾ cres 5680 ∘ ccom 5682 Fun wfun 6543 Fn wfn 6544 ‘cfv 6549 (class class class)co 7419 ∈ cmpo 7421 1st c1st 7992 2nd c2nd 7993 ↑m cmap 8845 sSet csts 17135 ndxcnx 17165 Basecbs 17183 ↾s cress 17212 Hom chom 17247 compcco 17248 ↾cat cresc 17794 ExtStrCatcestrc 18115 Rngcrng 20104 RngHom crnghm 20385 RngCatcrngc 20561 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2166 ax-ext 2696 ax-rep 5286 ax-sep 5300 ax-nul 5307 ax-pow 5365 ax-pr 5429 ax-un 7741 ax-cnex 11196 ax-resscn 11197 ax-1cn 11198 ax-icn 11199 ax-addcl 11200 ax-addrcl 11201 ax-mulcl 11202 ax-mulrcl 11203 ax-mulcom 11204 ax-addass 11205 ax-mulass 11206 ax-distr 11207 ax-i2m1 11208 ax-1ne0 11209 ax-1rid 11210 ax-rnegex 11211 ax-rrecex 11212 ax-cnre 11213 ax-pre-lttri 11214 ax-pre-lttrn 11215 ax-pre-ltadd 11216 ax-pre-mulgt0 11217 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 846 df-3or 1085 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2528 df-eu 2557 df-clab 2703 df-cleq 2717 df-clel 2802 df-nfc 2877 df-ne 2930 df-nel 3036 df-ral 3051 df-rex 3060 df-reu 3364 df-rab 3419 df-v 3463 df-sbc 3774 df-csb 3890 df-dif 3947 df-un 3949 df-in 3951 df-ss 3961 df-pss 3964 df-nul 4323 df-if 4531 df-pw 4606 df-sn 4631 df-pr 4633 df-tp 4635 df-op 4637 df-uni 4910 df-iun 4999 df-br 5150 df-opab 5212 df-mpt 5233 df-tr 5267 df-id 5576 df-eprel 5582 df-po 5590 df-so 5591 df-fr 5633 df-we 5635 df-xp 5684 df-rel 5685 df-cnv 5686 df-co 5687 df-dm 5688 df-rn 5689 df-res 5690 df-ima 5691 df-pred 6307 df-ord 6374 df-on 6375 df-lim 6376 df-suc 6377 df-iota 6501 df-fun 6551 df-fn 6552 df-f 6553 df-f1 6554 df-fo 6555 df-f1o 6556 df-fv 6557 df-riota 7375 df-ov 7422 df-oprab 7423 df-mpo 7424 df-om 7872 df-1st 7994 df-2nd 7995 df-frecs 8287 df-wrecs 8318 df-recs 8392 df-rdg 8431 df-1o 8487 df-er 8725 df-en 8965 df-dom 8966 df-sdom 8967 df-fin 8968 df-pnf 11282 df-mnf 11283 df-xr 11284 df-ltxr 11285 df-le 11286 df-sub 11478 df-neg 11479 df-nn 12246 df-2 12308 df-3 12309 df-4 12310 df-5 12311 df-6 12312 df-7 12313 df-8 12314 df-9 12315 df-n0 12506 df-z 12592 df-dec 12711 df-uz 12856 df-fz 13520 df-struct 17119 df-sets 17136 df-slot 17154 df-ndx 17166 df-base 17184 df-ress 17213 df-hom 17260 df-cco 17261 df-resc 17797 df-estrc 18116 df-rnghm 20387 df-rngc 20562 |
This theorem is referenced by: rngcresringcat 20614 |
Copyright terms: Public domain | W3C validator |