Users' Mathboxes Mathbox for Wolf Lammen < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  wl-sb8motv Structured version   Visualization version   GIF version

Theorem wl-sb8motv 37081
Description: Substitution of variable in universal quantifier. Closed form of sb8mo 2590 without ax-13 2366, but requiring 𝑥 and 𝑦 being disjoint.

This theorem relates to wl-mo3t 37076, since replacing 𝜑 with [𝑦 / 𝑥]𝜑 in the latter yields subexpressions like [𝑥 / 𝑦][𝑦 / 𝑥]𝜑, which can be reduced to 𝜑 via sbft 2256 and sbco 2501. So ∃*𝑥𝜑 ↔ ∃*𝑦[𝑦 / 𝑥]𝜑 is provable from wl-mo3t 37076 in a simple fashion. From an educational standpoint, one would assume wl-mo3t 37076 to be more fundamental, as it hints how the "at most one" objects on both sides of the biconditional correlate (they are the same), if they exist at all, and then prove this theorem from it. (Contributed by Wolf Lammen, 3-May-2025.)

Assertion
Ref Expression
wl-sb8motv (∀𝑥𝑦𝜑 → (∃*𝑥𝜑 ↔ ∃*𝑦[𝑦 / 𝑥]𝜑))
Distinct variable group:   𝑥,𝑦
Allowed substitution hints:   𝜑(𝑥,𝑦)

Proof of Theorem wl-sb8motv
StepHypRef Expression
1 wl-sb8eft 37051 . . 3 (∀𝑥𝑦𝜑 → (∃𝑥𝜑 ↔ ∃𝑦[𝑦 / 𝑥]𝜑))
2 wl-sb8eutv 37079 . . 3 (∀𝑥𝑦𝜑 → (∃!𝑥𝜑 ↔ ∃!𝑦[𝑦 / 𝑥]𝜑))
31, 2imbi12d 343 . 2 (∀𝑥𝑦𝜑 → ((∃𝑥𝜑 → ∃!𝑥𝜑) ↔ (∃𝑦[𝑦 / 𝑥]𝜑 → ∃!𝑦[𝑦 / 𝑥]𝜑)))
4 moeu 2572 . 2 (∃*𝑥𝜑 ↔ (∃𝑥𝜑 → ∃!𝑥𝜑))
5 moeu 2572 . 2 (∃*𝑦[𝑦 / 𝑥]𝜑 ↔ (∃𝑦[𝑦 / 𝑥]𝜑 → ∃!𝑦[𝑦 / 𝑥]𝜑))
63, 4, 53bitr4g 313 1 (∀𝑥𝑦𝜑 → (∃*𝑥𝜑 ↔ ∃*𝑦[𝑦 / 𝑥]𝜑))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wal 1531  wex 1773  wnf 1777  [wsb 2059  ∃*wmo 2527  ∃!weu 2557
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-10 2129  ax-11 2146  ax-12 2166
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 846  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2529  df-eu 2558
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator
OSZAR »