![]() |
Mathbox for Stanislas Polu |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > wnefimgd | Structured version Visualization version GIF version |
Description: The image of a mapping from A is nonempty if A is nonempty. (Contributed by Stanislas Polu, 9-Mar-2020.) |
Ref | Expression |
---|---|
wnefimgd.1 | ⊢ (𝜑 → 𝐴 ≠ ∅) |
wnefimgd.2 | ⊢ (𝜑 → 𝐹:𝐴⟶𝐵) |
Ref | Expression |
---|---|
wnefimgd | ⊢ (𝜑 → (𝐹 “ 𝐴) ≠ ∅) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ssid 4002 | . . . . 5 ⊢ 𝐴 ⊆ 𝐴 | |
2 | wnefimgd.2 | . . . . . 6 ⊢ (𝜑 → 𝐹:𝐴⟶𝐵) | |
3 | 2 | fdmd 6733 | . . . . 5 ⊢ (𝜑 → dom 𝐹 = 𝐴) |
4 | 1, 3 | sseqtrrid 4033 | . . . 4 ⊢ (𝜑 → 𝐴 ⊆ dom 𝐹) |
5 | sseqin2 4215 | . . . 4 ⊢ (𝐴 ⊆ dom 𝐹 ↔ (dom 𝐹 ∩ 𝐴) = 𝐴) | |
6 | 4, 5 | sylib 217 | . . 3 ⊢ (𝜑 → (dom 𝐹 ∩ 𝐴) = 𝐴) |
7 | wnefimgd.1 | . . 3 ⊢ (𝜑 → 𝐴 ≠ ∅) | |
8 | 6, 7 | eqnetrd 3005 | . 2 ⊢ (𝜑 → (dom 𝐹 ∩ 𝐴) ≠ ∅) |
9 | 8 | imadisjlnd 6084 | 1 ⊢ (𝜑 → (𝐹 “ 𝐴) ≠ ∅) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1534 ≠ wne 2937 ∩ cin 3946 ⊆ wss 3947 ∅c0 4323 dom cdm 5678 “ cima 5681 ⟶wf 6544 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1790 ax-4 1804 ax-5 1906 ax-6 1964 ax-7 2004 ax-8 2101 ax-9 2109 ax-10 2130 ax-11 2147 ax-12 2167 ax-ext 2699 ax-sep 5299 ax-nul 5306 ax-pr 5429 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 847 df-3an 1087 df-tru 1537 df-fal 1547 df-ex 1775 df-nf 1779 df-sb 2061 df-clab 2706 df-cleq 2720 df-clel 2806 df-ne 2938 df-ral 3059 df-rex 3068 df-rab 3430 df-v 3473 df-dif 3950 df-un 3952 df-in 3954 df-ss 3964 df-nul 4324 df-if 4530 df-sn 4630 df-pr 4632 df-op 4636 df-br 5149 df-opab 5211 df-xp 5684 df-cnv 5686 df-dm 5688 df-rn 5689 df-res 5690 df-ima 5691 df-fn 6551 df-f 6552 |
This theorem is referenced by: imo72b2lem0 43595 imo72b2lem2 43597 imo72b2lem1 43599 imo72b2 43602 |
Copyright terms: Public domain | W3C validator |