Users' Mathboxes Mathbox for Stanislas Polu < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  imo72b2lem0 Structured version   Visualization version   GIF version

Theorem imo72b2lem0 43589
Description: Lemma for imo72b2 43596. (Contributed by Stanislas Polu, 9-Mar-2020.)
Hypotheses
Ref Expression
imo72b2lem0.1 (𝜑𝐹:ℝ⟶ℝ)
imo72b2lem0.2 (𝜑𝐺:ℝ⟶ℝ)
imo72b2lem0.3 (𝜑𝐴 ∈ ℝ)
imo72b2lem0.4 (𝜑𝐵 ∈ ℝ)
imo72b2lem0.5 (𝜑 → ((𝐹‘(𝐴 + 𝐵)) + (𝐹‘(𝐴𝐵))) = (2 · ((𝐹𝐴) · (𝐺𝐵))))
imo72b2lem0.6 (𝜑 → ∀𝑦 ∈ ℝ (abs‘(𝐹𝑦)) ≤ 1)
Assertion
Ref Expression
imo72b2lem0 (𝜑 → ((abs‘(𝐹𝐴)) · (abs‘(𝐺𝐵))) ≤ sup((abs “ (𝐹 “ ℝ)), ℝ, < ))
Distinct variable groups:   𝑦,𝐹   𝜑,𝑦
Allowed substitution hints:   𝐴(𝑦)   𝐵(𝑦)   𝐺(𝑦)

Proof of Theorem imo72b2lem0
Dummy variables 𝑐 𝑥 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 imo72b2lem0.1 . . . . . . . 8 (𝜑𝐹:ℝ⟶ℝ)
2 imo72b2lem0.3 . . . . . . . 8 (𝜑𝐴 ∈ ℝ)
31, 2ffvelcdmd 7089 . . . . . . 7 (𝜑 → (𝐹𝐴) ∈ ℝ)
43recnd 11266 . . . . . 6 (𝜑 → (𝐹𝐴) ∈ ℂ)
54idi 1 . . . . 5 (𝜑 → (𝐹𝐴) ∈ ℂ)
6 imo72b2lem0.2 . . . . . . . 8 (𝜑𝐺:ℝ⟶ℝ)
7 imo72b2lem0.4 . . . . . . . 8 (𝜑𝐵 ∈ ℝ)
86, 7ffvelcdmd 7089 . . . . . . 7 (𝜑 → (𝐺𝐵) ∈ ℝ)
98recnd 11266 . . . . . 6 (𝜑 → (𝐺𝐵) ∈ ℂ)
109idi 1 . . . . 5 (𝜑 → (𝐺𝐵) ∈ ℂ)
115, 10mulcld 11258 . . . 4 (𝜑 → ((𝐹𝐴) · (𝐺𝐵)) ∈ ℂ)
1211abscld 15409 . . 3 (𝜑 → (abs‘((𝐹𝐴) · (𝐺𝐵))) ∈ ℝ)
13 imaco 6249 . . . . . 6 ((abs ∘ 𝐹) “ ℝ) = (abs “ (𝐹 “ ℝ))
1413eqcomi 2737 . . . . 5 (abs “ (𝐹 “ ℝ)) = ((abs ∘ 𝐹) “ ℝ)
15 imassrn 6068 . . . . . . 7 ((abs ∘ 𝐹) “ ℝ) ⊆ ran (abs ∘ 𝐹)
1615a1i 11 . . . . . 6 (𝜑 → ((abs ∘ 𝐹) “ ℝ) ⊆ ran (abs ∘ 𝐹))
17 absf 15310 . . . . . . . . . 10 abs:ℂ⟶ℝ
1817a1i 11 . . . . . . . . 9 (𝜑 → abs:ℂ⟶ℝ)
19 ax-resscn 11189 . . . . . . . . . 10 ℝ ⊆ ℂ
2019a1i 11 . . . . . . . . 9 (𝜑 → ℝ ⊆ ℂ)
2118, 20fssresd 6758 . . . . . . . 8 (𝜑 → (abs ↾ ℝ):ℝ⟶ℝ)
221, 21fco2d 43586 . . . . . . 7 (𝜑 → (abs ∘ 𝐹):ℝ⟶ℝ)
2322frnd 6724 . . . . . 6 (𝜑 → ran (abs ∘ 𝐹) ⊆ ℝ)
2416, 23sstrd 3988 . . . . 5 (𝜑 → ((abs ∘ 𝐹) “ ℝ) ⊆ ℝ)
2514, 24eqsstrid 4026 . . . 4 (𝜑 → (abs “ (𝐹 “ ℝ)) ⊆ ℝ)
26 0re 11240 . . . . . . . . . 10 0 ∈ ℝ
2726ne0ii 4333 . . . . . . . . 9 ℝ ≠ ∅
2827a1i 11 . . . . . . . 8 (𝜑 → ℝ ≠ ∅)
2928, 22wnefimgd 43585 . . . . . . 7 (𝜑 → ((abs ∘ 𝐹) “ ℝ) ≠ ∅)
3029necomd 2992 . . . . . 6 (𝜑 → ∅ ≠ ((abs ∘ 𝐹) “ ℝ))
3114a1i 11 . . . . . 6 (𝜑 → (abs “ (𝐹 “ ℝ)) = ((abs ∘ 𝐹) “ ℝ))
3230, 31neeqtrrd 3011 . . . . 5 (𝜑 → ∅ ≠ (abs “ (𝐹 “ ℝ)))
3332necomd 2992 . . . 4 (𝜑 → (abs “ (𝐹 “ ℝ)) ≠ ∅)
34 1red 11239 . . . . 5 (𝜑 → 1 ∈ ℝ)
35 simpr 484 . . . . . . 7 ((𝜑𝑐 = 1) → 𝑐 = 1)
3635breq2d 5154 . . . . . 6 ((𝜑𝑐 = 1) → (𝑥𝑐𝑥 ≤ 1))
3736ralbidv 3173 . . . . 5 ((𝜑𝑐 = 1) → (∀𝑥 ∈ (abs “ (𝐹 “ ℝ))𝑥𝑐 ↔ ∀𝑥 ∈ (abs “ (𝐹 “ ℝ))𝑥 ≤ 1))
38 imo72b2lem0.6 . . . . . 6 (𝜑 → ∀𝑦 ∈ ℝ (abs‘(𝐹𝑦)) ≤ 1)
391, 38extoimad 43588 . . . . 5 (𝜑 → ∀𝑥 ∈ (abs “ (𝐹 “ ℝ))𝑥 ≤ 1)
4034, 37, 39rspcedvd 3610 . . . 4 (𝜑 → ∃𝑐 ∈ ℝ ∀𝑥 ∈ (abs “ (𝐹 “ ℝ))𝑥𝑐)
4125, 33, 40suprcld 12201 . . 3 (𝜑 → sup((abs “ (𝐹 “ ℝ)), ℝ, < ) ∈ ℝ)
42 2re 12310 . . . 4 2 ∈ ℝ
4342a1i 11 . . 3 (𝜑 → 2 ∈ ℝ)
44 imo72b2lem0.5 . . . . . . . . 9 (𝜑 → ((𝐹‘(𝐴 + 𝐵)) + (𝐹‘(𝐴𝐵))) = (2 · ((𝐹𝐴) · (𝐺𝐵))))
4544idi 1 . . . . . . . 8 (𝜑 → ((𝐹‘(𝐴 + 𝐵)) + (𝐹‘(𝐴𝐵))) = (2 · ((𝐹𝐴) · (𝐺𝐵))))
4645fveq2d 6895 . . . . . . 7 (𝜑 → (abs‘((𝐹‘(𝐴 + 𝐵)) + (𝐹‘(𝐴𝐵)))) = (abs‘(2 · ((𝐹𝐴) · (𝐺𝐵)))))
47 2cnd 12314 . . . . . . . . 9 (𝜑 → 2 ∈ ℂ)
4847, 11mulcld 11258 . . . . . . . 8 (𝜑 → (2 · ((𝐹𝐴) · (𝐺𝐵))) ∈ ℂ)
4948abscld 15409 . . . . . . 7 (𝜑 → (abs‘(2 · ((𝐹𝐴) · (𝐺𝐵)))) ∈ ℝ)
5046, 49eqeltrd 2829 . . . . . 6 (𝜑 → (abs‘((𝐹‘(𝐴 + 𝐵)) + (𝐹‘(𝐴𝐵)))) ∈ ℝ)
511idi 1 . . . . . . . . . 10 (𝜑𝐹:ℝ⟶ℝ)
522idi 1 . . . . . . . . . . 11 (𝜑𝐴 ∈ ℝ)
537idi 1 . . . . . . . . . . 11 (𝜑𝐵 ∈ ℝ)
5452, 53readdcld 11267 . . . . . . . . . 10 (𝜑 → (𝐴 + 𝐵) ∈ ℝ)
5551, 54ffvelcdmd 7089 . . . . . . . . 9 (𝜑 → (𝐹‘(𝐴 + 𝐵)) ∈ ℝ)
5655recnd 11266 . . . . . . . 8 (𝜑 → (𝐹‘(𝐴 + 𝐵)) ∈ ℂ)
5756abscld 15409 . . . . . . 7 (𝜑 → (abs‘(𝐹‘(𝐴 + 𝐵))) ∈ ℝ)
5852, 53resubcld 11666 . . . . . . . . . 10 (𝜑 → (𝐴𝐵) ∈ ℝ)
5951, 58ffvelcdmd 7089 . . . . . . . . 9 (𝜑 → (𝐹‘(𝐴𝐵)) ∈ ℝ)
6059recnd 11266 . . . . . . . 8 (𝜑 → (𝐹‘(𝐴𝐵)) ∈ ℂ)
6160abscld 15409 . . . . . . 7 (𝜑 → (abs‘(𝐹‘(𝐴𝐵))) ∈ ℝ)
6257, 61readdcld 11267 . . . . . 6 (𝜑 → ((abs‘(𝐹‘(𝐴 + 𝐵))) + (abs‘(𝐹‘(𝐴𝐵)))) ∈ ℝ)
6343, 41remulcld 11268 . . . . . 6 (𝜑 → (2 · sup((abs “ (𝐹 “ ℝ)), ℝ, < )) ∈ ℝ)
6456, 60abstrid 15429 . . . . . 6 (𝜑 → (abs‘((𝐹‘(𝐴 + 𝐵)) + (𝐹‘(𝐴𝐵)))) ≤ ((abs‘(𝐹‘(𝐴 + 𝐵))) + (abs‘(𝐹‘(𝐴𝐵)))))
651, 54fvco3d 6992 . . . . . . . . . 10 (𝜑 → ((abs ∘ 𝐹)‘(𝐴 + 𝐵)) = (abs‘(𝐹‘(𝐴 + 𝐵))))
6654, 22wfximgfd 43587 . . . . . . . . . . 11 (𝜑 → ((abs ∘ 𝐹)‘(𝐴 + 𝐵)) ∈ ((abs ∘ 𝐹) “ ℝ))
6731idi 1 . . . . . . . . . . 11 (𝜑 → (abs “ (𝐹 “ ℝ)) = ((abs ∘ 𝐹) “ ℝ))
6866, 67eleqtrrd 2832 . . . . . . . . . 10 (𝜑 → ((abs ∘ 𝐹)‘(𝐴 + 𝐵)) ∈ (abs “ (𝐹 “ ℝ)))
6965, 68eqeltrrd 2830 . . . . . . . . 9 (𝜑 → (abs‘(𝐹‘(𝐴 + 𝐵))) ∈ (abs “ (𝐹 “ ℝ)))
7025, 33, 40, 69suprubd 12200 . . . . . . . 8 (𝜑 → (abs‘(𝐹‘(𝐴 + 𝐵))) ≤ sup((abs “ (𝐹 “ ℝ)), ℝ, < ))
711, 58fvco3d 6992 . . . . . . . . . 10 (𝜑 → ((abs ∘ 𝐹)‘(𝐴𝐵)) = (abs‘(𝐹‘(𝐴𝐵))))
7258, 22wfximgfd 43587 . . . . . . . . . . 11 (𝜑 → ((abs ∘ 𝐹)‘(𝐴𝐵)) ∈ ((abs ∘ 𝐹) “ ℝ))
7372, 31eleqtrrd 2832 . . . . . . . . . 10 (𝜑 → ((abs ∘ 𝐹)‘(𝐴𝐵)) ∈ (abs “ (𝐹 “ ℝ)))
7471, 73eqeltrrd 2830 . . . . . . . . 9 (𝜑 → (abs‘(𝐹‘(𝐴𝐵))) ∈ (abs “ (𝐹 “ ℝ)))
7525, 33, 40, 74suprubd 12200 . . . . . . . 8 (𝜑 → (abs‘(𝐹‘(𝐴𝐵))) ≤ sup((abs “ (𝐹 “ ℝ)), ℝ, < ))
7657, 61, 41, 41, 70, 75le2addd 11857 . . . . . . 7 (𝜑 → ((abs‘(𝐹‘(𝐴 + 𝐵))) + (abs‘(𝐹‘(𝐴𝐵)))) ≤ (sup((abs “ (𝐹 “ ℝ)), ℝ, < ) + sup((abs “ (𝐹 “ ℝ)), ℝ, < )))
7741recnd 11266 . . . . . . . . 9 (𝜑 → sup((abs “ (𝐹 “ ℝ)), ℝ, < ) ∈ ℂ)
78772timesd 12479 . . . . . . . 8 (𝜑 → (2 · sup((abs “ (𝐹 “ ℝ)), ℝ, < )) = (sup((abs “ (𝐹 “ ℝ)), ℝ, < ) + sup((abs “ (𝐹 “ ℝ)), ℝ, < )))
7978eqcomd 2734 . . . . . . 7 (𝜑 → (sup((abs “ (𝐹 “ ℝ)), ℝ, < ) + sup((abs “ (𝐹 “ ℝ)), ℝ, < )) = (2 · sup((abs “ (𝐹 “ ℝ)), ℝ, < )))
8079, 63eqeltrd 2829 . . . . . . 7 (𝜑 → (sup((abs “ (𝐹 “ ℝ)), ℝ, < ) + sup((abs “ (𝐹 “ ℝ)), ℝ, < )) ∈ ℝ)
8176, 79, 62, 80leeq2d 43582 . . . . . 6 (𝜑 → ((abs‘(𝐹‘(𝐴 + 𝐵))) + (abs‘(𝐹‘(𝐴𝐵)))) ≤ (2 · sup((abs “ (𝐹 “ ℝ)), ℝ, < )))
8250, 62, 63, 64, 81letrd 11395 . . . . 5 (𝜑 → (abs‘((𝐹‘(𝐴 + 𝐵)) + (𝐹‘(𝐴𝐵)))) ≤ (2 · sup((abs “ (𝐹 “ ℝ)), ℝ, < )))
8382, 46, 50, 63leeq1d 43581 . . . 4 (𝜑 → (abs‘(2 · ((𝐹𝐴) · (𝐺𝐵)))) ≤ (2 · sup((abs “ (𝐹 “ ℝ)), ℝ, < )))
84 0le2 12338 . . . . . 6 0 ≤ 2
8584a1i 11 . . . . 5 (𝜑 → 0 ≤ 2)
863idi 1 . . . . . 6 (𝜑 → (𝐹𝐴) ∈ ℝ)
878idi 1 . . . . . 6 (𝜑 → (𝐺𝐵) ∈ ℝ)
8886, 87remulcld 11268 . . . . 5 (𝜑 → ((𝐹𝐴) · (𝐺𝐵)) ∈ ℝ)
8985, 43, 88absmulrposd 43583 . . . 4 (𝜑 → (abs‘(2 · ((𝐹𝐴) · (𝐺𝐵)))) = (2 · (abs‘((𝐹𝐴) · (𝐺𝐵)))))
9083, 89, 49, 63leeq1d 43581 . . 3 (𝜑 → (2 · (abs‘((𝐹𝐴) · (𝐺𝐵)))) ≤ (2 · sup((abs “ (𝐹 “ ℝ)), ℝ, < )))
91 2pos 12339 . . . 4 0 < 2
9291a1i 11 . . 3 (𝜑 → 0 < 2)
9312, 41, 43, 90, 92wwlemuld 43580 . 2 (𝜑 → (abs‘((𝐹𝐴) · (𝐺𝐵))) ≤ sup((abs “ (𝐹 “ ℝ)), ℝ, < ))
944, 9absmuld 15427 . . 3 (𝜑 → (abs‘((𝐹𝐴) · (𝐺𝐵))) = ((abs‘(𝐹𝐴)) · (abs‘(𝐺𝐵))))
9594idi 1 . 2 (𝜑 → (abs‘((𝐹𝐴) · (𝐺𝐵))) = ((abs‘(𝐹𝐴)) · (abs‘(𝐺𝐵))))
9693, 95, 12, 41leeq1d 43581 1 (𝜑 → ((abs‘(𝐹𝐴)) · (abs‘(𝐺𝐵))) ≤ sup((abs “ (𝐹 “ ℝ)), ℝ, < ))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1534  wcel 2099  wne 2936  wral 3057  wss 3945  c0 4318   class class class wbr 5142  ran crn 5673  cima 5675  ccom 5676  wf 6538  cfv 6542  (class class class)co 7414  supcsup 9457  cc 11130  cr 11131  0cc0 11132  1c1 11133   + caddc 11135   · cmul 11137   < clt 11272  cle 11273  cmin 11468  2c2 12291  abscabs 15207
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1790  ax-4 1804  ax-5 1906  ax-6 1964  ax-7 2004  ax-8 2101  ax-9 2109  ax-10 2130  ax-11 2147  ax-12 2167  ax-ext 2699  ax-sep 5293  ax-nul 5300  ax-pow 5359  ax-pr 5423  ax-un 7734  ax-cnex 11188  ax-resscn 11189  ax-1cn 11190  ax-icn 11191  ax-addcl 11192  ax-addrcl 11193  ax-mulcl 11194  ax-mulrcl 11195  ax-mulcom 11196  ax-addass 11197  ax-mulass 11198  ax-distr 11199  ax-i2m1 11200  ax-1ne0 11201  ax-1rid 11202  ax-rnegex 11203  ax-rrecex 11204  ax-cnre 11205  ax-pre-lttri 11206  ax-pre-lttrn 11207  ax-pre-ltadd 11208  ax-pre-mulgt0 11209  ax-pre-sup 11210
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 847  df-3or 1086  df-3an 1087  df-tru 1537  df-fal 1547  df-ex 1775  df-nf 1779  df-sb 2061  df-mo 2530  df-eu 2559  df-clab 2706  df-cleq 2720  df-clel 2806  df-nfc 2881  df-ne 2937  df-nel 3043  df-ral 3058  df-rex 3067  df-rmo 3372  df-reu 3373  df-rab 3429  df-v 3472  df-sbc 3776  df-csb 3891  df-dif 3948  df-un 3950  df-in 3952  df-ss 3962  df-pss 3964  df-nul 4319  df-if 4525  df-pw 4600  df-sn 4625  df-pr 4627  df-op 4631  df-uni 4904  df-iun 4993  df-br 5143  df-opab 5205  df-mpt 5226  df-tr 5260  df-id 5570  df-eprel 5576  df-po 5584  df-so 5585  df-fr 5627  df-we 5629  df-xp 5678  df-rel 5679  df-cnv 5680  df-co 5681  df-dm 5682  df-rn 5683  df-res 5684  df-ima 5685  df-pred 6299  df-ord 6366  df-on 6367  df-lim 6368  df-suc 6369  df-iota 6494  df-fun 6544  df-fn 6545  df-f 6546  df-f1 6547  df-fo 6548  df-f1o 6549  df-fv 6550  df-riota 7370  df-ov 7417  df-oprab 7418  df-mpo 7419  df-om 7865  df-2nd 7988  df-frecs 8280  df-wrecs 8311  df-recs 8385  df-rdg 8424  df-er 8718  df-en 8958  df-dom 8959  df-sdom 8960  df-sup 9459  df-pnf 11274  df-mnf 11275  df-xr 11276  df-ltxr 11277  df-le 11278  df-sub 11470  df-neg 11471  df-div 11896  df-nn 12237  df-2 12299  df-3 12300  df-n0 12497  df-z 12583  df-uz 12847  df-rp 13001  df-seq 13993  df-exp 14053  df-cj 15072  df-re 15073  df-im 15074  df-sqrt 15208  df-abs 15209
This theorem is referenced by:  imo72b2  43596
  Copyright terms: Public domain W3C validator
OSZAR »