![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > xpexr2 | Structured version Visualization version GIF version |
Description: If a nonempty Cartesian product is a set, so are both of its components. (Contributed by NM, 27-Aug-2006.) |
Ref | Expression |
---|---|
xpexr2 | ⊢ (((𝐴 × 𝐵) ∈ 𝐶 ∧ (𝐴 × 𝐵) ≠ ∅) → (𝐴 ∈ V ∧ 𝐵 ∈ V)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | xpnz 6157 | . 2 ⊢ ((𝐴 ≠ ∅ ∧ 𝐵 ≠ ∅) ↔ (𝐴 × 𝐵) ≠ ∅) | |
2 | dmxp 5925 | . . . . . 6 ⊢ (𝐵 ≠ ∅ → dom (𝐴 × 𝐵) = 𝐴) | |
3 | 2 | adantl 481 | . . . . 5 ⊢ (((𝐴 × 𝐵) ∈ 𝐶 ∧ 𝐵 ≠ ∅) → dom (𝐴 × 𝐵) = 𝐴) |
4 | dmexg 7903 | . . . . . 6 ⊢ ((𝐴 × 𝐵) ∈ 𝐶 → dom (𝐴 × 𝐵) ∈ V) | |
5 | 4 | adantr 480 | . . . . 5 ⊢ (((𝐴 × 𝐵) ∈ 𝐶 ∧ 𝐵 ≠ ∅) → dom (𝐴 × 𝐵) ∈ V) |
6 | 3, 5 | eqeltrrd 2830 | . . . 4 ⊢ (((𝐴 × 𝐵) ∈ 𝐶 ∧ 𝐵 ≠ ∅) → 𝐴 ∈ V) |
7 | rnxp 6168 | . . . . . 6 ⊢ (𝐴 ≠ ∅ → ran (𝐴 × 𝐵) = 𝐵) | |
8 | 7 | adantl 481 | . . . . 5 ⊢ (((𝐴 × 𝐵) ∈ 𝐶 ∧ 𝐴 ≠ ∅) → ran (𝐴 × 𝐵) = 𝐵) |
9 | rnexg 7904 | . . . . . 6 ⊢ ((𝐴 × 𝐵) ∈ 𝐶 → ran (𝐴 × 𝐵) ∈ V) | |
10 | 9 | adantr 480 | . . . . 5 ⊢ (((𝐴 × 𝐵) ∈ 𝐶 ∧ 𝐴 ≠ ∅) → ran (𝐴 × 𝐵) ∈ V) |
11 | 8, 10 | eqeltrrd 2830 | . . . 4 ⊢ (((𝐴 × 𝐵) ∈ 𝐶 ∧ 𝐴 ≠ ∅) → 𝐵 ∈ V) |
12 | 6, 11 | anim12dan 618 | . . 3 ⊢ (((𝐴 × 𝐵) ∈ 𝐶 ∧ (𝐵 ≠ ∅ ∧ 𝐴 ≠ ∅)) → (𝐴 ∈ V ∧ 𝐵 ∈ V)) |
13 | 12 | ancom2s 649 | . 2 ⊢ (((𝐴 × 𝐵) ∈ 𝐶 ∧ (𝐴 ≠ ∅ ∧ 𝐵 ≠ ∅)) → (𝐴 ∈ V ∧ 𝐵 ∈ V)) |
14 | 1, 13 | sylan2br 594 | 1 ⊢ (((𝐴 × 𝐵) ∈ 𝐶 ∧ (𝐴 × 𝐵) ≠ ∅) → (𝐴 ∈ V ∧ 𝐵 ∈ V)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 = wceq 1534 ∈ wcel 2099 ≠ wne 2936 Vcvv 3470 ∅c0 4318 × cxp 5670 dom cdm 5672 ran crn 5673 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1790 ax-4 1804 ax-5 1906 ax-6 1964 ax-7 2004 ax-8 2101 ax-9 2109 ax-10 2130 ax-11 2147 ax-12 2167 ax-ext 2699 ax-sep 5293 ax-nul 5300 ax-pr 5423 ax-un 7734 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 847 df-3an 1087 df-tru 1537 df-fal 1547 df-ex 1775 df-nf 1779 df-sb 2061 df-mo 2530 df-eu 2559 df-clab 2706 df-cleq 2720 df-clel 2806 df-nfc 2881 df-ne 2937 df-ral 3058 df-rex 3067 df-rab 3429 df-v 3472 df-dif 3948 df-un 3950 df-in 3952 df-ss 3962 df-nul 4319 df-if 4525 df-sn 4625 df-pr 4627 df-op 4631 df-uni 4904 df-br 5143 df-opab 5205 df-xp 5678 df-rel 5679 df-cnv 5680 df-dm 5682 df-rn 5683 |
This theorem is referenced by: xpfir 9284 bj-xpnzex 36432 |
Copyright terms: Public domain | W3C validator |