MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  xpexr2 Structured version   Visualization version   GIF version

Theorem xpexr2 7921
Description: If a nonempty Cartesian product is a set, so are both of its components. (Contributed by NM, 27-Aug-2006.)
Assertion
Ref Expression
xpexr2 (((𝐴 × 𝐵) ∈ 𝐶 ∧ (𝐴 × 𝐵) ≠ ∅) → (𝐴 ∈ V ∧ 𝐵 ∈ V))

Proof of Theorem xpexr2
StepHypRef Expression
1 xpnz 6157 . 2 ((𝐴 ≠ ∅ ∧ 𝐵 ≠ ∅) ↔ (𝐴 × 𝐵) ≠ ∅)
2 dmxp 5925 . . . . . 6 (𝐵 ≠ ∅ → dom (𝐴 × 𝐵) = 𝐴)
32adantl 481 . . . . 5 (((𝐴 × 𝐵) ∈ 𝐶𝐵 ≠ ∅) → dom (𝐴 × 𝐵) = 𝐴)
4 dmexg 7903 . . . . . 6 ((𝐴 × 𝐵) ∈ 𝐶 → dom (𝐴 × 𝐵) ∈ V)
54adantr 480 . . . . 5 (((𝐴 × 𝐵) ∈ 𝐶𝐵 ≠ ∅) → dom (𝐴 × 𝐵) ∈ V)
63, 5eqeltrrd 2830 . . . 4 (((𝐴 × 𝐵) ∈ 𝐶𝐵 ≠ ∅) → 𝐴 ∈ V)
7 rnxp 6168 . . . . . 6 (𝐴 ≠ ∅ → ran (𝐴 × 𝐵) = 𝐵)
87adantl 481 . . . . 5 (((𝐴 × 𝐵) ∈ 𝐶𝐴 ≠ ∅) → ran (𝐴 × 𝐵) = 𝐵)
9 rnexg 7904 . . . . . 6 ((𝐴 × 𝐵) ∈ 𝐶 → ran (𝐴 × 𝐵) ∈ V)
109adantr 480 . . . . 5 (((𝐴 × 𝐵) ∈ 𝐶𝐴 ≠ ∅) → ran (𝐴 × 𝐵) ∈ V)
118, 10eqeltrrd 2830 . . . 4 (((𝐴 × 𝐵) ∈ 𝐶𝐴 ≠ ∅) → 𝐵 ∈ V)
126, 11anim12dan 618 . . 3 (((𝐴 × 𝐵) ∈ 𝐶 ∧ (𝐵 ≠ ∅ ∧ 𝐴 ≠ ∅)) → (𝐴 ∈ V ∧ 𝐵 ∈ V))
1312ancom2s 649 . 2 (((𝐴 × 𝐵) ∈ 𝐶 ∧ (𝐴 ≠ ∅ ∧ 𝐵 ≠ ∅)) → (𝐴 ∈ V ∧ 𝐵 ∈ V))
141, 13sylan2br 594 1 (((𝐴 × 𝐵) ∈ 𝐶 ∧ (𝐴 × 𝐵) ≠ ∅) → (𝐴 ∈ V ∧ 𝐵 ∈ V))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1534  wcel 2099  wne 2936  Vcvv 3470  c0 4318   × cxp 5670  dom cdm 5672  ran crn 5673
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1790  ax-4 1804  ax-5 1906  ax-6 1964  ax-7 2004  ax-8 2101  ax-9 2109  ax-10 2130  ax-11 2147  ax-12 2167  ax-ext 2699  ax-sep 5293  ax-nul 5300  ax-pr 5423  ax-un 7734
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 847  df-3an 1087  df-tru 1537  df-fal 1547  df-ex 1775  df-nf 1779  df-sb 2061  df-mo 2530  df-eu 2559  df-clab 2706  df-cleq 2720  df-clel 2806  df-nfc 2881  df-ne 2937  df-ral 3058  df-rex 3067  df-rab 3429  df-v 3472  df-dif 3948  df-un 3950  df-in 3952  df-ss 3962  df-nul 4319  df-if 4525  df-sn 4625  df-pr 4627  df-op 4631  df-uni 4904  df-br 5143  df-opab 5205  df-xp 5678  df-rel 5679  df-cnv 5680  df-dm 5682  df-rn 5683
This theorem is referenced by:  xpfir  9284  bj-xpnzex  36432
  Copyright terms: Public domain W3C validator
OSZAR »