![]() |
Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > 4atexlemntlpq | Structured version Visualization version GIF version |
Description: Lemma for 4atexlem7 39552. (Contributed by NM, 24-Nov-2012.) |
Ref | Expression |
---|---|
4thatlem.ph | ⊢ (𝜑 ↔ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) ∧ (𝑆 ∈ 𝐴 ∧ (𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ 𝑊 ∧ (𝑃 ∨ 𝑅) = (𝑄 ∨ 𝑅)) ∧ (𝑇 ∈ 𝐴 ∧ (𝑈 ∨ 𝑇) = (𝑉 ∨ 𝑇))) ∧ (𝑃 ≠ 𝑄 ∧ ¬ 𝑆 ≤ (𝑃 ∨ 𝑄)))) |
4thatlem0.l | ⊢ ≤ = (le‘𝐾) |
4thatlem0.j | ⊢ ∨ = (join‘𝐾) |
4thatlem0.m | ⊢ ∧ = (meet‘𝐾) |
4thatlem0.a | ⊢ 𝐴 = (Atoms‘𝐾) |
4thatlem0.h | ⊢ 𝐻 = (LHyp‘𝐾) |
4thatlem0.u | ⊢ 𝑈 = ((𝑃 ∨ 𝑄) ∧ 𝑊) |
4thatlem0.v | ⊢ 𝑉 = ((𝑃 ∨ 𝑆) ∧ 𝑊) |
Ref | Expression |
---|---|
4atexlemntlpq | ⊢ (𝜑 → ¬ 𝑇 ≤ (𝑃 ∨ 𝑄)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 4thatlem.ph | . . 3 ⊢ (𝜑 ↔ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) ∧ (𝑆 ∈ 𝐴 ∧ (𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ 𝑊 ∧ (𝑃 ∨ 𝑅) = (𝑄 ∨ 𝑅)) ∧ (𝑇 ∈ 𝐴 ∧ (𝑈 ∨ 𝑇) = (𝑉 ∨ 𝑇))) ∧ (𝑃 ≠ 𝑄 ∧ ¬ 𝑆 ≤ (𝑃 ∨ 𝑄)))) | |
2 | 4thatlem0.l | . . 3 ⊢ ≤ = (le‘𝐾) | |
3 | 4thatlem0.j | . . 3 ⊢ ∨ = (join‘𝐾) | |
4 | 4thatlem0.m | . . 3 ⊢ ∧ = (meet‘𝐾) | |
5 | 4thatlem0.a | . . 3 ⊢ 𝐴 = (Atoms‘𝐾) | |
6 | 4thatlem0.h | . . 3 ⊢ 𝐻 = (LHyp‘𝐾) | |
7 | 4thatlem0.u | . . 3 ⊢ 𝑈 = ((𝑃 ∨ 𝑄) ∧ 𝑊) | |
8 | 4thatlem0.v | . . 3 ⊢ 𝑉 = ((𝑃 ∨ 𝑆) ∧ 𝑊) | |
9 | 1, 2, 3, 4, 5, 6, 7, 8 | 4atexlemtlw 39544 | . 2 ⊢ (𝜑 → 𝑇 ≤ 𝑊) |
10 | 1 | 4atexlemkc 39535 | . . . . . 6 ⊢ (𝜑 → 𝐾 ∈ CvLat) |
11 | 1, 2, 3, 4, 5, 6, 7 | 4atexlemu 39541 | . . . . . 6 ⊢ (𝜑 → 𝑈 ∈ 𝐴) |
12 | 1, 2, 3, 4, 5, 6, 7, 8 | 4atexlemv 39542 | . . . . . 6 ⊢ (𝜑 → 𝑉 ∈ 𝐴) |
13 | 1 | 4atexlemt 39530 | . . . . . 6 ⊢ (𝜑 → 𝑇 ∈ 𝐴) |
14 | 1, 2, 3, 4, 5, 6, 7, 8 | 4atexlemunv 39543 | . . . . . 6 ⊢ (𝜑 → 𝑈 ≠ 𝑉) |
15 | 1 | 4atexlemutvt 39531 | . . . . . 6 ⊢ (𝜑 → (𝑈 ∨ 𝑇) = (𝑉 ∨ 𝑇)) |
16 | 5, 3 | cvlsupr5 38822 | . . . . . 6 ⊢ ((𝐾 ∈ CvLat ∧ (𝑈 ∈ 𝐴 ∧ 𝑉 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴) ∧ (𝑈 ≠ 𝑉 ∧ (𝑈 ∨ 𝑇) = (𝑉 ∨ 𝑇))) → 𝑇 ≠ 𝑈) |
17 | 10, 11, 12, 13, 14, 15, 16 | syl132anc 1385 | . . . . 5 ⊢ (𝜑 → 𝑇 ≠ 𝑈) |
18 | 17 | adantr 479 | . . . 4 ⊢ ((𝜑 ∧ 𝑇 ≤ (𝑃 ∨ 𝑄)) → 𝑇 ≠ 𝑈) |
19 | 1 | 4atexlemk 39524 | . . . . . . 7 ⊢ (𝜑 → 𝐾 ∈ HL) |
20 | 1 | 4atexlemw 39525 | . . . . . . 7 ⊢ (𝜑 → 𝑊 ∈ 𝐻) |
21 | 19, 20 | jca 510 | . . . . . 6 ⊢ (𝜑 → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) |
22 | 21 | adantr 479 | . . . . 5 ⊢ ((𝜑 ∧ 𝑇 ≤ (𝑃 ∨ 𝑄)) → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) |
23 | 1 | 4atexlempw 39526 | . . . . . 6 ⊢ (𝜑 → (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊)) |
24 | 23 | adantr 479 | . . . . 5 ⊢ ((𝜑 ∧ 𝑇 ≤ (𝑃 ∨ 𝑄)) → (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊)) |
25 | 1 | 4atexlemq 39528 | . . . . . 6 ⊢ (𝜑 → 𝑄 ∈ 𝐴) |
26 | 25 | adantr 479 | . . . . 5 ⊢ ((𝜑 ∧ 𝑇 ≤ (𝑃 ∨ 𝑄)) → 𝑄 ∈ 𝐴) |
27 | 13 | adantr 479 | . . . . 5 ⊢ ((𝜑 ∧ 𝑇 ≤ (𝑃 ∨ 𝑄)) → 𝑇 ∈ 𝐴) |
28 | 1 | 4atexlempnq 39532 | . . . . . 6 ⊢ (𝜑 → 𝑃 ≠ 𝑄) |
29 | 28 | adantr 479 | . . . . 5 ⊢ ((𝜑 ∧ 𝑇 ≤ (𝑃 ∨ 𝑄)) → 𝑃 ≠ 𝑄) |
30 | simpr 483 | . . . . 5 ⊢ ((𝜑 ∧ 𝑇 ≤ (𝑃 ∨ 𝑄)) → 𝑇 ≤ (𝑃 ∨ 𝑄)) | |
31 | 2, 3, 4, 5, 6, 7 | lhpat3 39523 | . . . . 5 ⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊)) ∧ (𝑄 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴) ∧ (𝑃 ≠ 𝑄 ∧ 𝑇 ≤ (𝑃 ∨ 𝑄))) → (¬ 𝑇 ≤ 𝑊 ↔ 𝑇 ≠ 𝑈)) |
32 | 22, 24, 26, 27, 29, 30, 31 | syl222anc 1383 | . . . 4 ⊢ ((𝜑 ∧ 𝑇 ≤ (𝑃 ∨ 𝑄)) → (¬ 𝑇 ≤ 𝑊 ↔ 𝑇 ≠ 𝑈)) |
33 | 18, 32 | mpbird 256 | . . 3 ⊢ ((𝜑 ∧ 𝑇 ≤ (𝑃 ∨ 𝑄)) → ¬ 𝑇 ≤ 𝑊) |
34 | 33 | ex 411 | . 2 ⊢ (𝜑 → (𝑇 ≤ (𝑃 ∨ 𝑄) → ¬ 𝑇 ≤ 𝑊)) |
35 | 9, 34 | mt2d 136 | 1 ⊢ (𝜑 → ¬ 𝑇 ≤ (𝑃 ∨ 𝑄)) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ↔ wb 205 ∧ wa 394 ∧ w3a 1084 = wceq 1533 ∈ wcel 2098 ≠ wne 2936 class class class wbr 5150 ‘cfv 6551 (class class class)co 7424 lecple 17245 joincjn 18308 meetcmee 18309 Atomscatm 38739 CvLatclc 38741 HLchlt 38826 LHypclh 39461 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2166 ax-ext 2698 ax-rep 5287 ax-sep 5301 ax-nul 5308 ax-pow 5367 ax-pr 5431 ax-un 7744 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 846 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2529 df-eu 2558 df-clab 2705 df-cleq 2719 df-clel 2805 df-nfc 2880 df-ne 2937 df-ral 3058 df-rex 3067 df-rmo 3372 df-reu 3373 df-rab 3429 df-v 3473 df-sbc 3777 df-csb 3893 df-dif 3950 df-un 3952 df-in 3954 df-ss 3964 df-nul 4325 df-if 4531 df-pw 4606 df-sn 4631 df-pr 4633 df-op 4637 df-uni 4911 df-iun 5000 df-br 5151 df-opab 5213 df-mpt 5234 df-id 5578 df-xp 5686 df-rel 5687 df-cnv 5688 df-co 5689 df-dm 5690 df-rn 5691 df-res 5692 df-ima 5693 df-iota 6503 df-fun 6553 df-fn 6554 df-f 6555 df-f1 6556 df-fo 6557 df-f1o 6558 df-fv 6559 df-riota 7380 df-ov 7427 df-oprab 7428 df-proset 18292 df-poset 18310 df-plt 18327 df-lub 18343 df-glb 18344 df-join 18345 df-meet 18346 df-p0 18422 df-p1 18423 df-lat 18429 df-clat 18496 df-oposet 38652 df-ol 38654 df-oml 38655 df-covers 38742 df-ats 38743 df-atl 38774 df-cvlat 38798 df-hlat 38827 df-lhyp 39465 |
This theorem is referenced by: 4atexlemc 39546 4atexlemex2 39548 4atexlemcnd 39549 |
Copyright terms: Public domain | W3C validator |