Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  4atlem3 Structured version   Visualization version   GIF version

Theorem 4atlem3 39069
Description: Lemma for 4at 39086. Break inequality into 4 cases. (Contributed by NM, 8-Jul-2012.)
Hypotheses
Ref Expression
4at.l = (le‘𝐾)
4at.j = (join‘𝐾)
4at.a 𝐴 = (Atoms‘𝐾)
Assertion
Ref Expression
4atlem3 ((((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ (𝑅𝐴𝑆𝐴𝑇𝐴) ∧ (𝑈𝐴𝑉𝐴)) ∧ (𝑃𝑄 ∧ ¬ 𝑅 (𝑃 𝑄) ∧ ¬ 𝑆 ((𝑃 𝑄) 𝑅))) → ((¬ 𝑃 ((𝑇 𝑈) 𝑉) ∨ ¬ 𝑄 ((𝑇 𝑈) 𝑉)) ∨ (¬ 𝑅 ((𝑇 𝑈) 𝑉) ∨ ¬ 𝑆 ((𝑇 𝑈) 𝑉))))

Proof of Theorem 4atlem3
StepHypRef Expression
1 simpl11 1246 . . . 4 ((((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ (𝑅𝐴𝑆𝐴𝑇𝐴) ∧ (𝑈𝐴𝑉𝐴)) ∧ (𝑃𝑄 ∧ ¬ 𝑅 (𝑃 𝑄) ∧ ¬ 𝑆 ((𝑃 𝑄) 𝑅))) → 𝐾 ∈ HL)
2 simpl1 1189 . . . . 5 ((((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ (𝑅𝐴𝑆𝐴𝑇𝐴) ∧ (𝑈𝐴𝑉𝐴)) ∧ (𝑃𝑄 ∧ ¬ 𝑅 (𝑃 𝑄) ∧ ¬ 𝑆 ((𝑃 𝑄) 𝑅))) → (𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴))
3 simpl21 1249 . . . . 5 ((((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ (𝑅𝐴𝑆𝐴𝑇𝐴) ∧ (𝑈𝐴𝑉𝐴)) ∧ (𝑃𝑄 ∧ ¬ 𝑅 (𝑃 𝑄) ∧ ¬ 𝑆 ((𝑃 𝑄) 𝑅))) → 𝑅𝐴)
4 simpl22 1250 . . . . 5 ((((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ (𝑅𝐴𝑆𝐴𝑇𝐴) ∧ (𝑈𝐴𝑉𝐴)) ∧ (𝑃𝑄 ∧ ¬ 𝑅 (𝑃 𝑄) ∧ ¬ 𝑆 ((𝑃 𝑄) 𝑅))) → 𝑆𝐴)
5 simpr 484 . . . . 5 ((((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ (𝑅𝐴𝑆𝐴𝑇𝐴) ∧ (𝑈𝐴𝑉𝐴)) ∧ (𝑃𝑄 ∧ ¬ 𝑅 (𝑃 𝑄) ∧ ¬ 𝑆 ((𝑃 𝑄) 𝑅))) → (𝑃𝑄 ∧ ¬ 𝑅 (𝑃 𝑄) ∧ ¬ 𝑆 ((𝑃 𝑄) 𝑅)))
6 4at.l . . . . . 6 = (le‘𝐾)
7 4at.j . . . . . 6 = (join‘𝐾)
8 4at.a . . . . . 6 𝐴 = (Atoms‘𝐾)
9 eqid 2728 . . . . . 6 (LVols‘𝐾) = (LVols‘𝐾)
106, 7, 8, 9lvoli2 39054 . . . . 5 (((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ (𝑅𝐴𝑆𝐴) ∧ (𝑃𝑄 ∧ ¬ 𝑅 (𝑃 𝑄) ∧ ¬ 𝑆 ((𝑃 𝑄) 𝑅))) → (((𝑃 𝑄) 𝑅) 𝑆) ∈ (LVols‘𝐾))
112, 3, 4, 5, 10syl121anc 1373 . . . 4 ((((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ (𝑅𝐴𝑆𝐴𝑇𝐴) ∧ (𝑈𝐴𝑉𝐴)) ∧ (𝑃𝑄 ∧ ¬ 𝑅 (𝑃 𝑄) ∧ ¬ 𝑆 ((𝑃 𝑄) 𝑅))) → (((𝑃 𝑄) 𝑅) 𝑆) ∈ (LVols‘𝐾))
12 simpl23 1251 . . . 4 ((((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ (𝑅𝐴𝑆𝐴𝑇𝐴) ∧ (𝑈𝐴𝑉𝐴)) ∧ (𝑃𝑄 ∧ ¬ 𝑅 (𝑃 𝑄) ∧ ¬ 𝑆 ((𝑃 𝑄) 𝑅))) → 𝑇𝐴)
13 simpl3l 1226 . . . 4 ((((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ (𝑅𝐴𝑆𝐴𝑇𝐴) ∧ (𝑈𝐴𝑉𝐴)) ∧ (𝑃𝑄 ∧ ¬ 𝑅 (𝑃 𝑄) ∧ ¬ 𝑆 ((𝑃 𝑄) 𝑅))) → 𝑈𝐴)
14 simpl3r 1227 . . . 4 ((((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ (𝑅𝐴𝑆𝐴𝑇𝐴) ∧ (𝑈𝐴𝑉𝐴)) ∧ (𝑃𝑄 ∧ ¬ 𝑅 (𝑃 𝑄) ∧ ¬ 𝑆 ((𝑃 𝑄) 𝑅))) → 𝑉𝐴)
156, 7, 8, 9lvolnle3at 39055 . . . 4 (((𝐾 ∈ HL ∧ (((𝑃 𝑄) 𝑅) 𝑆) ∈ (LVols‘𝐾)) ∧ (𝑇𝐴𝑈𝐴𝑉𝐴)) → ¬ (((𝑃 𝑄) 𝑅) 𝑆) ((𝑇 𝑈) 𝑉))
161, 11, 12, 13, 14, 15syl23anc 1375 . . 3 ((((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ (𝑅𝐴𝑆𝐴𝑇𝐴) ∧ (𝑈𝐴𝑉𝐴)) ∧ (𝑃𝑄 ∧ ¬ 𝑅 (𝑃 𝑄) ∧ ¬ 𝑆 ((𝑃 𝑄) 𝑅))) → ¬ (((𝑃 𝑄) 𝑅) 𝑆) ((𝑇 𝑈) 𝑉))
171hllatd 38836 . . . . 5 ((((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ (𝑅𝐴𝑆𝐴𝑇𝐴) ∧ (𝑈𝐴𝑉𝐴)) ∧ (𝑃𝑄 ∧ ¬ 𝑅 (𝑃 𝑄) ∧ ¬ 𝑆 ((𝑃 𝑄) 𝑅))) → 𝐾 ∈ Lat)
18 eqid 2728 . . . . . . 7 (Base‘𝐾) = (Base‘𝐾)
1918, 7, 8hlatjcl 38839 . . . . . 6 ((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) → (𝑃 𝑄) ∈ (Base‘𝐾))
202, 19syl 17 . . . . 5 ((((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ (𝑅𝐴𝑆𝐴𝑇𝐴) ∧ (𝑈𝐴𝑉𝐴)) ∧ (𝑃𝑄 ∧ ¬ 𝑅 (𝑃 𝑄) ∧ ¬ 𝑆 ((𝑃 𝑄) 𝑅))) → (𝑃 𝑄) ∈ (Base‘𝐾))
2118, 7, 8hlatjcl 38839 . . . . . 6 ((𝐾 ∈ HL ∧ 𝑅𝐴𝑆𝐴) → (𝑅 𝑆) ∈ (Base‘𝐾))
221, 3, 4, 21syl3anc 1369 . . . . 5 ((((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ (𝑅𝐴𝑆𝐴𝑇𝐴) ∧ (𝑈𝐴𝑉𝐴)) ∧ (𝑃𝑄 ∧ ¬ 𝑅 (𝑃 𝑄) ∧ ¬ 𝑆 ((𝑃 𝑄) 𝑅))) → (𝑅 𝑆) ∈ (Base‘𝐾))
2318, 7, 8hlatjcl 38839 . . . . . . 7 ((𝐾 ∈ HL ∧ 𝑇𝐴𝑈𝐴) → (𝑇 𝑈) ∈ (Base‘𝐾))
241, 12, 13, 23syl3anc 1369 . . . . . 6 ((((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ (𝑅𝐴𝑆𝐴𝑇𝐴) ∧ (𝑈𝐴𝑉𝐴)) ∧ (𝑃𝑄 ∧ ¬ 𝑅 (𝑃 𝑄) ∧ ¬ 𝑆 ((𝑃 𝑄) 𝑅))) → (𝑇 𝑈) ∈ (Base‘𝐾))
2518, 8atbase 38761 . . . . . . 7 (𝑉𝐴𝑉 ∈ (Base‘𝐾))
2614, 25syl 17 . . . . . 6 ((((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ (𝑅𝐴𝑆𝐴𝑇𝐴) ∧ (𝑈𝐴𝑉𝐴)) ∧ (𝑃𝑄 ∧ ¬ 𝑅 (𝑃 𝑄) ∧ ¬ 𝑆 ((𝑃 𝑄) 𝑅))) → 𝑉 ∈ (Base‘𝐾))
2718, 7latjcl 18430 . . . . . 6 ((𝐾 ∈ Lat ∧ (𝑇 𝑈) ∈ (Base‘𝐾) ∧ 𝑉 ∈ (Base‘𝐾)) → ((𝑇 𝑈) 𝑉) ∈ (Base‘𝐾))
2817, 24, 26, 27syl3anc 1369 . . . . 5 ((((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ (𝑅𝐴𝑆𝐴𝑇𝐴) ∧ (𝑈𝐴𝑉𝐴)) ∧ (𝑃𝑄 ∧ ¬ 𝑅 (𝑃 𝑄) ∧ ¬ 𝑆 ((𝑃 𝑄) 𝑅))) → ((𝑇 𝑈) 𝑉) ∈ (Base‘𝐾))
2918, 6, 7latjle12 18441 . . . . 5 ((𝐾 ∈ Lat ∧ ((𝑃 𝑄) ∈ (Base‘𝐾) ∧ (𝑅 𝑆) ∈ (Base‘𝐾) ∧ ((𝑇 𝑈) 𝑉) ∈ (Base‘𝐾))) → (((𝑃 𝑄) ((𝑇 𝑈) 𝑉) ∧ (𝑅 𝑆) ((𝑇 𝑈) 𝑉)) ↔ ((𝑃 𝑄) (𝑅 𝑆)) ((𝑇 𝑈) 𝑉)))
3017, 20, 22, 28, 29syl13anc 1370 . . . 4 ((((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ (𝑅𝐴𝑆𝐴𝑇𝐴) ∧ (𝑈𝐴𝑉𝐴)) ∧ (𝑃𝑄 ∧ ¬ 𝑅 (𝑃 𝑄) ∧ ¬ 𝑆 ((𝑃 𝑄) 𝑅))) → (((𝑃 𝑄) ((𝑇 𝑈) 𝑉) ∧ (𝑅 𝑆) ((𝑇 𝑈) 𝑉)) ↔ ((𝑃 𝑄) (𝑅 𝑆)) ((𝑇 𝑈) 𝑉)))
31 simpl12 1247 . . . . . . 7 ((((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ (𝑅𝐴𝑆𝐴𝑇𝐴) ∧ (𝑈𝐴𝑉𝐴)) ∧ (𝑃𝑄 ∧ ¬ 𝑅 (𝑃 𝑄) ∧ ¬ 𝑆 ((𝑃 𝑄) 𝑅))) → 𝑃𝐴)
3218, 8atbase 38761 . . . . . . 7 (𝑃𝐴𝑃 ∈ (Base‘𝐾))
3331, 32syl 17 . . . . . 6 ((((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ (𝑅𝐴𝑆𝐴𝑇𝐴) ∧ (𝑈𝐴𝑉𝐴)) ∧ (𝑃𝑄 ∧ ¬ 𝑅 (𝑃 𝑄) ∧ ¬ 𝑆 ((𝑃 𝑄) 𝑅))) → 𝑃 ∈ (Base‘𝐾))
34 simpl13 1248 . . . . . . 7 ((((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ (𝑅𝐴𝑆𝐴𝑇𝐴) ∧ (𝑈𝐴𝑉𝐴)) ∧ (𝑃𝑄 ∧ ¬ 𝑅 (𝑃 𝑄) ∧ ¬ 𝑆 ((𝑃 𝑄) 𝑅))) → 𝑄𝐴)
3518, 8atbase 38761 . . . . . . 7 (𝑄𝐴𝑄 ∈ (Base‘𝐾))
3634, 35syl 17 . . . . . 6 ((((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ (𝑅𝐴𝑆𝐴𝑇𝐴) ∧ (𝑈𝐴𝑉𝐴)) ∧ (𝑃𝑄 ∧ ¬ 𝑅 (𝑃 𝑄) ∧ ¬ 𝑆 ((𝑃 𝑄) 𝑅))) → 𝑄 ∈ (Base‘𝐾))
3718, 6, 7latjle12 18441 . . . . . 6 ((𝐾 ∈ Lat ∧ (𝑃 ∈ (Base‘𝐾) ∧ 𝑄 ∈ (Base‘𝐾) ∧ ((𝑇 𝑈) 𝑉) ∈ (Base‘𝐾))) → ((𝑃 ((𝑇 𝑈) 𝑉) ∧ 𝑄 ((𝑇 𝑈) 𝑉)) ↔ (𝑃 𝑄) ((𝑇 𝑈) 𝑉)))
3817, 33, 36, 28, 37syl13anc 1370 . . . . 5 ((((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ (𝑅𝐴𝑆𝐴𝑇𝐴) ∧ (𝑈𝐴𝑉𝐴)) ∧ (𝑃𝑄 ∧ ¬ 𝑅 (𝑃 𝑄) ∧ ¬ 𝑆 ((𝑃 𝑄) 𝑅))) → ((𝑃 ((𝑇 𝑈) 𝑉) ∧ 𝑄 ((𝑇 𝑈) 𝑉)) ↔ (𝑃 𝑄) ((𝑇 𝑈) 𝑉)))
3918, 8atbase 38761 . . . . . . 7 (𝑅𝐴𝑅 ∈ (Base‘𝐾))
403, 39syl 17 . . . . . 6 ((((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ (𝑅𝐴𝑆𝐴𝑇𝐴) ∧ (𝑈𝐴𝑉𝐴)) ∧ (𝑃𝑄 ∧ ¬ 𝑅 (𝑃 𝑄) ∧ ¬ 𝑆 ((𝑃 𝑄) 𝑅))) → 𝑅 ∈ (Base‘𝐾))
4118, 8atbase 38761 . . . . . . 7 (𝑆𝐴𝑆 ∈ (Base‘𝐾))
424, 41syl 17 . . . . . 6 ((((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ (𝑅𝐴𝑆𝐴𝑇𝐴) ∧ (𝑈𝐴𝑉𝐴)) ∧ (𝑃𝑄 ∧ ¬ 𝑅 (𝑃 𝑄) ∧ ¬ 𝑆 ((𝑃 𝑄) 𝑅))) → 𝑆 ∈ (Base‘𝐾))
4318, 6, 7latjle12 18441 . . . . . 6 ((𝐾 ∈ Lat ∧ (𝑅 ∈ (Base‘𝐾) ∧ 𝑆 ∈ (Base‘𝐾) ∧ ((𝑇 𝑈) 𝑉) ∈ (Base‘𝐾))) → ((𝑅 ((𝑇 𝑈) 𝑉) ∧ 𝑆 ((𝑇 𝑈) 𝑉)) ↔ (𝑅 𝑆) ((𝑇 𝑈) 𝑉)))
4417, 40, 42, 28, 43syl13anc 1370 . . . . 5 ((((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ (𝑅𝐴𝑆𝐴𝑇𝐴) ∧ (𝑈𝐴𝑉𝐴)) ∧ (𝑃𝑄 ∧ ¬ 𝑅 (𝑃 𝑄) ∧ ¬ 𝑆 ((𝑃 𝑄) 𝑅))) → ((𝑅 ((𝑇 𝑈) 𝑉) ∧ 𝑆 ((𝑇 𝑈) 𝑉)) ↔ (𝑅 𝑆) ((𝑇 𝑈) 𝑉)))
4538, 44anbi12d 631 . . . 4 ((((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ (𝑅𝐴𝑆𝐴𝑇𝐴) ∧ (𝑈𝐴𝑉𝐴)) ∧ (𝑃𝑄 ∧ ¬ 𝑅 (𝑃 𝑄) ∧ ¬ 𝑆 ((𝑃 𝑄) 𝑅))) → (((𝑃 ((𝑇 𝑈) 𝑉) ∧ 𝑄 ((𝑇 𝑈) 𝑉)) ∧ (𝑅 ((𝑇 𝑈) 𝑉) ∧ 𝑆 ((𝑇 𝑈) 𝑉))) ↔ ((𝑃 𝑄) ((𝑇 𝑈) 𝑉) ∧ (𝑅 𝑆) ((𝑇 𝑈) 𝑉))))
4618, 7latjass 18474 . . . . . 6 ((𝐾 ∈ Lat ∧ ((𝑃 𝑄) ∈ (Base‘𝐾) ∧ 𝑅 ∈ (Base‘𝐾) ∧ 𝑆 ∈ (Base‘𝐾))) → (((𝑃 𝑄) 𝑅) 𝑆) = ((𝑃 𝑄) (𝑅 𝑆)))
4717, 20, 40, 42, 46syl13anc 1370 . . . . 5 ((((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ (𝑅𝐴𝑆𝐴𝑇𝐴) ∧ (𝑈𝐴𝑉𝐴)) ∧ (𝑃𝑄 ∧ ¬ 𝑅 (𝑃 𝑄) ∧ ¬ 𝑆 ((𝑃 𝑄) 𝑅))) → (((𝑃 𝑄) 𝑅) 𝑆) = ((𝑃 𝑄) (𝑅 𝑆)))
4847breq1d 5158 . . . 4 ((((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ (𝑅𝐴𝑆𝐴𝑇𝐴) ∧ (𝑈𝐴𝑉𝐴)) ∧ (𝑃𝑄 ∧ ¬ 𝑅 (𝑃 𝑄) ∧ ¬ 𝑆 ((𝑃 𝑄) 𝑅))) → ((((𝑃 𝑄) 𝑅) 𝑆) ((𝑇 𝑈) 𝑉) ↔ ((𝑃 𝑄) (𝑅 𝑆)) ((𝑇 𝑈) 𝑉)))
4930, 45, 483bitr4d 311 . . 3 ((((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ (𝑅𝐴𝑆𝐴𝑇𝐴) ∧ (𝑈𝐴𝑉𝐴)) ∧ (𝑃𝑄 ∧ ¬ 𝑅 (𝑃 𝑄) ∧ ¬ 𝑆 ((𝑃 𝑄) 𝑅))) → (((𝑃 ((𝑇 𝑈) 𝑉) ∧ 𝑄 ((𝑇 𝑈) 𝑉)) ∧ (𝑅 ((𝑇 𝑈) 𝑉) ∧ 𝑆 ((𝑇 𝑈) 𝑉))) ↔ (((𝑃 𝑄) 𝑅) 𝑆) ((𝑇 𝑈) 𝑉)))
5016, 49mtbird 325 . 2 ((((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ (𝑅𝐴𝑆𝐴𝑇𝐴) ∧ (𝑈𝐴𝑉𝐴)) ∧ (𝑃𝑄 ∧ ¬ 𝑅 (𝑃 𝑄) ∧ ¬ 𝑆 ((𝑃 𝑄) 𝑅))) → ¬ ((𝑃 ((𝑇 𝑈) 𝑉) ∧ 𝑄 ((𝑇 𝑈) 𝑉)) ∧ (𝑅 ((𝑇 𝑈) 𝑉) ∧ 𝑆 ((𝑇 𝑈) 𝑉))))
51 ianor 980 . . 3 (¬ ((𝑃 ((𝑇 𝑈) 𝑉) ∧ 𝑄 ((𝑇 𝑈) 𝑉)) ∧ (𝑅 ((𝑇 𝑈) 𝑉) ∧ 𝑆 ((𝑇 𝑈) 𝑉))) ↔ (¬ (𝑃 ((𝑇 𝑈) 𝑉) ∧ 𝑄 ((𝑇 𝑈) 𝑉)) ∨ ¬ (𝑅 ((𝑇 𝑈) 𝑉) ∧ 𝑆 ((𝑇 𝑈) 𝑉))))
52 ianor 980 . . . 4 (¬ (𝑃 ((𝑇 𝑈) 𝑉) ∧ 𝑄 ((𝑇 𝑈) 𝑉)) ↔ (¬ 𝑃 ((𝑇 𝑈) 𝑉) ∨ ¬ 𝑄 ((𝑇 𝑈) 𝑉)))
53 ianor 980 . . . 4 (¬ (𝑅 ((𝑇 𝑈) 𝑉) ∧ 𝑆 ((𝑇 𝑈) 𝑉)) ↔ (¬ 𝑅 ((𝑇 𝑈) 𝑉) ∨ ¬ 𝑆 ((𝑇 𝑈) 𝑉)))
5452, 53orbi12i 913 . . 3 ((¬ (𝑃 ((𝑇 𝑈) 𝑉) ∧ 𝑄 ((𝑇 𝑈) 𝑉)) ∨ ¬ (𝑅 ((𝑇 𝑈) 𝑉) ∧ 𝑆 ((𝑇 𝑈) 𝑉))) ↔ ((¬ 𝑃 ((𝑇 𝑈) 𝑉) ∨ ¬ 𝑄 ((𝑇 𝑈) 𝑉)) ∨ (¬ 𝑅 ((𝑇 𝑈) 𝑉) ∨ ¬ 𝑆 ((𝑇 𝑈) 𝑉))))
5551, 54bitri 275 . 2 (¬ ((𝑃 ((𝑇 𝑈) 𝑉) ∧ 𝑄 ((𝑇 𝑈) 𝑉)) ∧ (𝑅 ((𝑇 𝑈) 𝑉) ∧ 𝑆 ((𝑇 𝑈) 𝑉))) ↔ ((¬ 𝑃 ((𝑇 𝑈) 𝑉) ∨ ¬ 𝑄 ((𝑇 𝑈) 𝑉)) ∨ (¬ 𝑅 ((𝑇 𝑈) 𝑉) ∨ ¬ 𝑆 ((𝑇 𝑈) 𝑉))))
5650, 55sylib 217 1 ((((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ (𝑅𝐴𝑆𝐴𝑇𝐴) ∧ (𝑈𝐴𝑉𝐴)) ∧ (𝑃𝑄 ∧ ¬ 𝑅 (𝑃 𝑄) ∧ ¬ 𝑆 ((𝑃 𝑄) 𝑅))) → ((¬ 𝑃 ((𝑇 𝑈) 𝑉) ∨ ¬ 𝑄 ((𝑇 𝑈) 𝑉)) ∨ (¬ 𝑅 ((𝑇 𝑈) 𝑉) ∨ ¬ 𝑆 ((𝑇 𝑈) 𝑉))))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 205  wa 395  wo 846  w3a 1085   = wceq 1534  wcel 2099  wne 2937   class class class wbr 5148  cfv 6548  (class class class)co 7420  Basecbs 17179  lecple 17239  joincjn 18302  Latclat 18422  Atomscatm 38735  HLchlt 38822  LVolsclvol 38966
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1790  ax-4 1804  ax-5 1906  ax-6 1964  ax-7 2004  ax-8 2101  ax-9 2109  ax-10 2130  ax-11 2147  ax-12 2167  ax-ext 2699  ax-rep 5285  ax-sep 5299  ax-nul 5306  ax-pow 5365  ax-pr 5429  ax-un 7740
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 847  df-3an 1087  df-tru 1537  df-fal 1547  df-ex 1775  df-nf 1779  df-sb 2061  df-mo 2530  df-eu 2559  df-clab 2706  df-cleq 2720  df-clel 2806  df-nfc 2881  df-ne 2938  df-ral 3059  df-rex 3068  df-rmo 3373  df-reu 3374  df-rab 3430  df-v 3473  df-sbc 3777  df-csb 3893  df-dif 3950  df-un 3952  df-in 3954  df-ss 3964  df-nul 4324  df-if 4530  df-pw 4605  df-sn 4630  df-pr 4632  df-op 4636  df-uni 4909  df-iun 4998  df-br 5149  df-opab 5211  df-mpt 5232  df-id 5576  df-xp 5684  df-rel 5685  df-cnv 5686  df-co 5687  df-dm 5688  df-rn 5689  df-res 5690  df-ima 5691  df-iota 6500  df-fun 6550  df-fn 6551  df-f 6552  df-f1 6553  df-fo 6554  df-f1o 6555  df-fv 6556  df-riota 7376  df-ov 7423  df-oprab 7424  df-proset 18286  df-poset 18304  df-plt 18321  df-lub 18337  df-glb 18338  df-join 18339  df-meet 18340  df-p0 18416  df-lat 18423  df-clat 18490  df-oposet 38648  df-ol 38650  df-oml 38651  df-covers 38738  df-ats 38739  df-atl 38770  df-cvlat 38794  df-hlat 38823  df-llines 38971  df-lplanes 38972  df-lvols 38973
This theorem is referenced by:  4atlem3a  39070  4atlem12  39085
  Copyright terms: Public domain W3C validator
OSZAR »