![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > abssnid | Structured version Visualization version GIF version |
Description: For a negative surreal, its absolute value is its negation. (Contributed by Scott Fenton, 16-Apr-2025.) |
Ref | Expression |
---|---|
abssnid | ⊢ ((𝐴 ∈ No ∧ 𝐴 ≤s 0s ) → (abss‘𝐴) = ( -us ‘𝐴)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 0sno 27758 | . . . 4 ⊢ 0s ∈ No | |
2 | sleloe 27686 | . . . 4 ⊢ ((𝐴 ∈ No ∧ 0s ∈ No ) → (𝐴 ≤s 0s ↔ (𝐴 <s 0s ∨ 𝐴 = 0s ))) | |
3 | 1, 2 | mpan2 690 | . . 3 ⊢ (𝐴 ∈ No → (𝐴 ≤s 0s ↔ (𝐴 <s 0s ∨ 𝐴 = 0s ))) |
4 | sltnle 27685 | . . . . . 6 ⊢ ((𝐴 ∈ No ∧ 0s ∈ No ) → (𝐴 <s 0s ↔ ¬ 0s ≤s 𝐴)) | |
5 | 1, 4 | mpan2 690 | . . . . 5 ⊢ (𝐴 ∈ No → (𝐴 <s 0s ↔ ¬ 0s ≤s 𝐴)) |
6 | abssval 28132 | . . . . . . 7 ⊢ (𝐴 ∈ No → (abss‘𝐴) = if( 0s ≤s 𝐴, 𝐴, ( -us ‘𝐴))) | |
7 | iffalse 4538 | . . . . . . 7 ⊢ (¬ 0s ≤s 𝐴 → if( 0s ≤s 𝐴, 𝐴, ( -us ‘𝐴)) = ( -us ‘𝐴)) | |
8 | 6, 7 | sylan9eq 2788 | . . . . . 6 ⊢ ((𝐴 ∈ No ∧ ¬ 0s ≤s 𝐴) → (abss‘𝐴) = ( -us ‘𝐴)) |
9 | 8 | ex 412 | . . . . 5 ⊢ (𝐴 ∈ No → (¬ 0s ≤s 𝐴 → (abss‘𝐴) = ( -us ‘𝐴))) |
10 | 5, 9 | sylbid 239 | . . . 4 ⊢ (𝐴 ∈ No → (𝐴 <s 0s → (abss‘𝐴) = ( -us ‘𝐴))) |
11 | abs0s 28135 | . . . . . . 7 ⊢ (abss‘ 0s ) = 0s | |
12 | negs0s 27938 | . . . . . . 7 ⊢ ( -us ‘ 0s ) = 0s | |
13 | 11, 12 | eqtr4i 2759 | . . . . . 6 ⊢ (abss‘ 0s ) = ( -us ‘ 0s ) |
14 | fveq2 6897 | . . . . . 6 ⊢ (𝐴 = 0s → (abss‘𝐴) = (abss‘ 0s )) | |
15 | fveq2 6897 | . . . . . 6 ⊢ (𝐴 = 0s → ( -us ‘𝐴) = ( -us ‘ 0s )) | |
16 | 13, 14, 15 | 3eqtr4a 2794 | . . . . 5 ⊢ (𝐴 = 0s → (abss‘𝐴) = ( -us ‘𝐴)) |
17 | 16 | a1i 11 | . . . 4 ⊢ (𝐴 ∈ No → (𝐴 = 0s → (abss‘𝐴) = ( -us ‘𝐴))) |
18 | 10, 17 | jaod 858 | . . 3 ⊢ (𝐴 ∈ No → ((𝐴 <s 0s ∨ 𝐴 = 0s ) → (abss‘𝐴) = ( -us ‘𝐴))) |
19 | 3, 18 | sylbid 239 | . 2 ⊢ (𝐴 ∈ No → (𝐴 ≤s 0s → (abss‘𝐴) = ( -us ‘𝐴))) |
20 | 19 | imp 406 | 1 ⊢ ((𝐴 ∈ No ∧ 𝐴 ≤s 0s ) → (abss‘𝐴) = ( -us ‘𝐴)) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ↔ wb 205 ∧ wa 395 ∨ wo 846 = wceq 1534 ∈ wcel 2099 ifcif 4529 class class class wbr 5148 ‘cfv 6548 No csur 27572 <s cslt 27573 ≤s csle 27676 0s c0s 27754 -us cnegs 27931 absscabss 28130 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1790 ax-4 1804 ax-5 1906 ax-6 1964 ax-7 2004 ax-8 2101 ax-9 2109 ax-10 2130 ax-11 2147 ax-12 2167 ax-ext 2699 ax-rep 5285 ax-sep 5299 ax-nul 5306 ax-pow 5365 ax-pr 5429 ax-un 7740 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 847 df-3or 1086 df-3an 1087 df-tru 1537 df-fal 1547 df-ex 1775 df-nf 1779 df-sb 2061 df-mo 2530 df-eu 2559 df-clab 2706 df-cleq 2720 df-clel 2806 df-nfc 2881 df-ne 2938 df-ral 3059 df-rex 3068 df-rmo 3373 df-reu 3374 df-rab 3430 df-v 3473 df-sbc 3777 df-csb 3893 df-dif 3950 df-un 3952 df-in 3954 df-ss 3964 df-pss 3966 df-nul 4324 df-if 4530 df-pw 4605 df-sn 4630 df-pr 4632 df-tp 4634 df-op 4636 df-uni 4909 df-int 4950 df-iun 4998 df-br 5149 df-opab 5211 df-mpt 5232 df-tr 5266 df-id 5576 df-eprel 5582 df-po 5590 df-so 5591 df-fr 5633 df-se 5634 df-we 5635 df-xp 5684 df-rel 5685 df-cnv 5686 df-co 5687 df-dm 5688 df-rn 5689 df-res 5690 df-ima 5691 df-pred 6305 df-ord 6372 df-on 6373 df-suc 6375 df-iota 6500 df-fun 6550 df-fn 6551 df-f 6552 df-f1 6553 df-fo 6554 df-f1o 6555 df-fv 6556 df-riota 7376 df-ov 7423 df-oprab 7424 df-mpo 7425 df-2nd 7994 df-frecs 8286 df-wrecs 8317 df-recs 8391 df-1o 8486 df-2o 8487 df-no 27575 df-slt 27576 df-bday 27577 df-sle 27677 df-sslt 27713 df-scut 27715 df-0s 27756 df-made 27773 df-old 27774 df-left 27776 df-right 27777 df-norec 27854 df-negs 27933 df-abss 28131 |
This theorem is referenced by: absmuls 28137 abssneg 28140 sleabs 28141 |
Copyright terms: Public domain | W3C validator |