MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  abssnid Structured version   Visualization version   GIF version

Theorem abssnid 28136
Description: For a negative surreal, its absolute value is its negation. (Contributed by Scott Fenton, 16-Apr-2025.)
Assertion
Ref Expression
abssnid ((𝐴 No 𝐴 ≤s 0s ) → (abss𝐴) = ( -us𝐴))

Proof of Theorem abssnid
StepHypRef Expression
1 0sno 27758 . . . 4 0s No
2 sleloe 27686 . . . 4 ((𝐴 No ∧ 0s No ) → (𝐴 ≤s 0s ↔ (𝐴 <s 0s𝐴 = 0s )))
31, 2mpan2 690 . . 3 (𝐴 No → (𝐴 ≤s 0s ↔ (𝐴 <s 0s𝐴 = 0s )))
4 sltnle 27685 . . . . . 6 ((𝐴 No ∧ 0s No ) → (𝐴 <s 0s ↔ ¬ 0s ≤s 𝐴))
51, 4mpan2 690 . . . . 5 (𝐴 No → (𝐴 <s 0s ↔ ¬ 0s ≤s 𝐴))
6 abssval 28132 . . . . . . 7 (𝐴 No → (abss𝐴) = if( 0s ≤s 𝐴, 𝐴, ( -us𝐴)))
7 iffalse 4538 . . . . . . 7 (¬ 0s ≤s 𝐴 → if( 0s ≤s 𝐴, 𝐴, ( -us𝐴)) = ( -us𝐴))
86, 7sylan9eq 2788 . . . . . 6 ((𝐴 No ∧ ¬ 0s ≤s 𝐴) → (abss𝐴) = ( -us𝐴))
98ex 412 . . . . 5 (𝐴 No → (¬ 0s ≤s 𝐴 → (abss𝐴) = ( -us𝐴)))
105, 9sylbid 239 . . . 4 (𝐴 No → (𝐴 <s 0s → (abss𝐴) = ( -us𝐴)))
11 abs0s 28135 . . . . . . 7 (abss‘ 0s ) = 0s
12 negs0s 27938 . . . . . . 7 ( -us ‘ 0s ) = 0s
1311, 12eqtr4i 2759 . . . . . 6 (abss‘ 0s ) = ( -us ‘ 0s )
14 fveq2 6897 . . . . . 6 (𝐴 = 0s → (abss𝐴) = (abss‘ 0s ))
15 fveq2 6897 . . . . . 6 (𝐴 = 0s → ( -us𝐴) = ( -us ‘ 0s ))
1613, 14, 153eqtr4a 2794 . . . . 5 (𝐴 = 0s → (abss𝐴) = ( -us𝐴))
1716a1i 11 . . . 4 (𝐴 No → (𝐴 = 0s → (abss𝐴) = ( -us𝐴)))
1810, 17jaod 858 . . 3 (𝐴 No → ((𝐴 <s 0s𝐴 = 0s ) → (abss𝐴) = ( -us𝐴)))
193, 18sylbid 239 . 2 (𝐴 No → (𝐴 ≤s 0s → (abss𝐴) = ( -us𝐴)))
2019imp 406 1 ((𝐴 No 𝐴 ≤s 0s ) → (abss𝐴) = ( -us𝐴))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 205  wa 395  wo 846   = wceq 1534  wcel 2099  ifcif 4529   class class class wbr 5148  cfv 6548   No csur 27572   <s cslt 27573   ≤s csle 27676   0s c0s 27754   -us cnegs 27931  absscabss 28130
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1790  ax-4 1804  ax-5 1906  ax-6 1964  ax-7 2004  ax-8 2101  ax-9 2109  ax-10 2130  ax-11 2147  ax-12 2167  ax-ext 2699  ax-rep 5285  ax-sep 5299  ax-nul 5306  ax-pow 5365  ax-pr 5429  ax-un 7740
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 847  df-3or 1086  df-3an 1087  df-tru 1537  df-fal 1547  df-ex 1775  df-nf 1779  df-sb 2061  df-mo 2530  df-eu 2559  df-clab 2706  df-cleq 2720  df-clel 2806  df-nfc 2881  df-ne 2938  df-ral 3059  df-rex 3068  df-rmo 3373  df-reu 3374  df-rab 3430  df-v 3473  df-sbc 3777  df-csb 3893  df-dif 3950  df-un 3952  df-in 3954  df-ss 3964  df-pss 3966  df-nul 4324  df-if 4530  df-pw 4605  df-sn 4630  df-pr 4632  df-tp 4634  df-op 4636  df-uni 4909  df-int 4950  df-iun 4998  df-br 5149  df-opab 5211  df-mpt 5232  df-tr 5266  df-id 5576  df-eprel 5582  df-po 5590  df-so 5591  df-fr 5633  df-se 5634  df-we 5635  df-xp 5684  df-rel 5685  df-cnv 5686  df-co 5687  df-dm 5688  df-rn 5689  df-res 5690  df-ima 5691  df-pred 6305  df-ord 6372  df-on 6373  df-suc 6375  df-iota 6500  df-fun 6550  df-fn 6551  df-f 6552  df-f1 6553  df-fo 6554  df-f1o 6555  df-fv 6556  df-riota 7376  df-ov 7423  df-oprab 7424  df-mpo 7425  df-2nd 7994  df-frecs 8286  df-wrecs 8317  df-recs 8391  df-1o 8486  df-2o 8487  df-no 27575  df-slt 27576  df-bday 27577  df-sle 27677  df-sslt 27713  df-scut 27715  df-0s 27756  df-made 27773  df-old 27774  df-left 27776  df-right 27777  df-norec 27854  df-negs 27933  df-abss 28131
This theorem is referenced by:  absmuls  28137  abssneg  28140  sleabs  28141
  Copyright terms: Public domain W3C validator
OSZAR »