Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  athgt Structured version   Visualization version   GIF version

Theorem athgt 39056
Description: A Hilbert lattice, whose height is at least 4, has a chain of 4 successively covering atom joins. (Contributed by NM, 3-May-2012.)
Hypotheses
Ref Expression
athgt.j = (join‘𝐾)
athgt.c 𝐶 = ( ⋖ ‘𝐾)
athgt.a 𝐴 = (Atoms‘𝐾)
Assertion
Ref Expression
athgt (𝐾 ∈ HL → ∃𝑝𝐴𝑞𝐴 (𝑝𝐶(𝑝 𝑞) ∧ ∃𝑟𝐴 ((𝑝 𝑞)𝐶((𝑝 𝑞) 𝑟) ∧ ∃𝑠𝐴 ((𝑝 𝑞) 𝑟)𝐶(((𝑝 𝑞) 𝑟) 𝑠))))
Distinct variable groups:   𝑞,𝑝,𝑟,𝑠,𝐴   ,𝑟,𝑠   𝐾,𝑝,𝑞,𝑟,𝑠
Allowed substitution hints:   𝐶(𝑠,𝑟,𝑞,𝑝)   (𝑞,𝑝)

Proof of Theorem athgt
Dummy variables 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqid 2725 . . 3 (Base‘𝐾) = (Base‘𝐾)
2 eqid 2725 . . 3 (lt‘𝐾) = (lt‘𝐾)
3 eqid 2725 . . 3 (0.‘𝐾) = (0.‘𝐾)
4 eqid 2725 . . 3 (1.‘𝐾) = (1.‘𝐾)
51, 2, 3, 4hlhgt4 38988 . 2 (𝐾 ∈ HL → ∃𝑥 ∈ (Base‘𝐾)∃𝑦 ∈ (Base‘𝐾)∃𝑧 ∈ (Base‘𝐾)(((0.‘𝐾)(lt‘𝐾)𝑥𝑥(lt‘𝐾)𝑦) ∧ (𝑦(lt‘𝐾)𝑧𝑧(lt‘𝐾)(1.‘𝐾))))
6 simpl1 1188 . . . . . . . . 9 (((𝐾 ∈ HL ∧ (𝑥 ∈ (Base‘𝐾) ∧ 𝑦 ∈ (Base‘𝐾)) ∧ 𝑧 ∈ (Base‘𝐾)) ∧ (((0.‘𝐾)(lt‘𝐾)𝑥𝑥(lt‘𝐾)𝑦) ∧ (𝑦(lt‘𝐾)𝑧𝑧(lt‘𝐾)(1.‘𝐾)))) → 𝐾 ∈ HL)
7 hlop 38961 . . . . . . . . . 10 (𝐾 ∈ HL → 𝐾 ∈ OP)
81, 3op0cl 38783 . . . . . . . . . 10 (𝐾 ∈ OP → (0.‘𝐾) ∈ (Base‘𝐾))
96, 7, 83syl 18 . . . . . . . . 9 (((𝐾 ∈ HL ∧ (𝑥 ∈ (Base‘𝐾) ∧ 𝑦 ∈ (Base‘𝐾)) ∧ 𝑧 ∈ (Base‘𝐾)) ∧ (((0.‘𝐾)(lt‘𝐾)𝑥𝑥(lt‘𝐾)𝑦) ∧ (𝑦(lt‘𝐾)𝑧𝑧(lt‘𝐾)(1.‘𝐾)))) → (0.‘𝐾) ∈ (Base‘𝐾))
10 simpl2l 1223 . . . . . . . . 9 (((𝐾 ∈ HL ∧ (𝑥 ∈ (Base‘𝐾) ∧ 𝑦 ∈ (Base‘𝐾)) ∧ 𝑧 ∈ (Base‘𝐾)) ∧ (((0.‘𝐾)(lt‘𝐾)𝑥𝑥(lt‘𝐾)𝑦) ∧ (𝑦(lt‘𝐾)𝑧𝑧(lt‘𝐾)(1.‘𝐾)))) → 𝑥 ∈ (Base‘𝐾))
11 simprll 777 . . . . . . . . 9 (((𝐾 ∈ HL ∧ (𝑥 ∈ (Base‘𝐾) ∧ 𝑦 ∈ (Base‘𝐾)) ∧ 𝑧 ∈ (Base‘𝐾)) ∧ (((0.‘𝐾)(lt‘𝐾)𝑥𝑥(lt‘𝐾)𝑦) ∧ (𝑦(lt‘𝐾)𝑧𝑧(lt‘𝐾)(1.‘𝐾)))) → (0.‘𝐾)(lt‘𝐾)𝑥)
12 eqid 2725 . . . . . . . . . 10 (le‘𝐾) = (le‘𝐾)
13 athgt.j . . . . . . . . . 10 = (join‘𝐾)
14 athgt.c . . . . . . . . . 10 𝐶 = ( ⋖ ‘𝐾)
15 athgt.a . . . . . . . . . 10 𝐴 = (Atoms‘𝐾)
161, 12, 2, 13, 14, 15hlrelat3 39012 . . . . . . . . 9 (((𝐾 ∈ HL ∧ (0.‘𝐾) ∈ (Base‘𝐾) ∧ 𝑥 ∈ (Base‘𝐾)) ∧ (0.‘𝐾)(lt‘𝐾)𝑥) → ∃𝑝𝐴 ((0.‘𝐾)𝐶((0.‘𝐾) 𝑝) ∧ ((0.‘𝐾) 𝑝)(le‘𝐾)𝑥))
176, 9, 10, 11, 16syl31anc 1370 . . . . . . . 8 (((𝐾 ∈ HL ∧ (𝑥 ∈ (Base‘𝐾) ∧ 𝑦 ∈ (Base‘𝐾)) ∧ 𝑧 ∈ (Base‘𝐾)) ∧ (((0.‘𝐾)(lt‘𝐾)𝑥𝑥(lt‘𝐾)𝑦) ∧ (𝑦(lt‘𝐾)𝑧𝑧(lt‘𝐾)(1.‘𝐾)))) → ∃𝑝𝐴 ((0.‘𝐾)𝐶((0.‘𝐾) 𝑝) ∧ ((0.‘𝐾) 𝑝)(le‘𝐾)𝑥))
18 simp11 1200 . . . . . . . . . . . . . 14 (((𝐾 ∈ HL ∧ (𝑥 ∈ (Base‘𝐾) ∧ 𝑦 ∈ (Base‘𝐾)) ∧ 𝑧 ∈ (Base‘𝐾)) ∧ (((0.‘𝐾)(lt‘𝐾)𝑥𝑥(lt‘𝐾)𝑦) ∧ (𝑦(lt‘𝐾)𝑧𝑧(lt‘𝐾)(1.‘𝐾))) ∧ 𝑝𝐴) → 𝐾 ∈ HL)
19 simp3 1135 . . . . . . . . . . . . . 14 (((𝐾 ∈ HL ∧ (𝑥 ∈ (Base‘𝐾) ∧ 𝑦 ∈ (Base‘𝐾)) ∧ 𝑧 ∈ (Base‘𝐾)) ∧ (((0.‘𝐾)(lt‘𝐾)𝑥𝑥(lt‘𝐾)𝑦) ∧ (𝑦(lt‘𝐾)𝑧𝑧(lt‘𝐾)(1.‘𝐾))) ∧ 𝑝𝐴) → 𝑝𝐴)
203, 14, 15atcvr0 38887 . . . . . . . . . . . . . 14 ((𝐾 ∈ HL ∧ 𝑝𝐴) → (0.‘𝐾)𝐶𝑝)
2118, 19, 20syl2anc 582 . . . . . . . . . . . . 13 (((𝐾 ∈ HL ∧ (𝑥 ∈ (Base‘𝐾) ∧ 𝑦 ∈ (Base‘𝐾)) ∧ 𝑧 ∈ (Base‘𝐾)) ∧ (((0.‘𝐾)(lt‘𝐾)𝑥𝑥(lt‘𝐾)𝑦) ∧ (𝑦(lt‘𝐾)𝑧𝑧(lt‘𝐾)(1.‘𝐾))) ∧ 𝑝𝐴) → (0.‘𝐾)𝐶𝑝)
22 hlol 38960 . . . . . . . . . . . . . . 15 (𝐾 ∈ HL → 𝐾 ∈ OL)
2318, 22syl 17 . . . . . . . . . . . . . 14 (((𝐾 ∈ HL ∧ (𝑥 ∈ (Base‘𝐾) ∧ 𝑦 ∈ (Base‘𝐾)) ∧ 𝑧 ∈ (Base‘𝐾)) ∧ (((0.‘𝐾)(lt‘𝐾)𝑥𝑥(lt‘𝐾)𝑦) ∧ (𝑦(lt‘𝐾)𝑧𝑧(lt‘𝐾)(1.‘𝐾))) ∧ 𝑝𝐴) → 𝐾 ∈ OL)
241, 15atbase 38888 . . . . . . . . . . . . . . 15 (𝑝𝐴𝑝 ∈ (Base‘𝐾))
25243ad2ant3 1132 . . . . . . . . . . . . . 14 (((𝐾 ∈ HL ∧ (𝑥 ∈ (Base‘𝐾) ∧ 𝑦 ∈ (Base‘𝐾)) ∧ 𝑧 ∈ (Base‘𝐾)) ∧ (((0.‘𝐾)(lt‘𝐾)𝑥𝑥(lt‘𝐾)𝑦) ∧ (𝑦(lt‘𝐾)𝑧𝑧(lt‘𝐾)(1.‘𝐾))) ∧ 𝑝𝐴) → 𝑝 ∈ (Base‘𝐾))
261, 13, 3olj02 38825 . . . . . . . . . . . . . 14 ((𝐾 ∈ OL ∧ 𝑝 ∈ (Base‘𝐾)) → ((0.‘𝐾) 𝑝) = 𝑝)
2723, 25, 26syl2anc 582 . . . . . . . . . . . . 13 (((𝐾 ∈ HL ∧ (𝑥 ∈ (Base‘𝐾) ∧ 𝑦 ∈ (Base‘𝐾)) ∧ 𝑧 ∈ (Base‘𝐾)) ∧ (((0.‘𝐾)(lt‘𝐾)𝑥𝑥(lt‘𝐾)𝑦) ∧ (𝑦(lt‘𝐾)𝑧𝑧(lt‘𝐾)(1.‘𝐾))) ∧ 𝑝𝐴) → ((0.‘𝐾) 𝑝) = 𝑝)
2821, 27breqtrrd 5177 . . . . . . . . . . . 12 (((𝐾 ∈ HL ∧ (𝑥 ∈ (Base‘𝐾) ∧ 𝑦 ∈ (Base‘𝐾)) ∧ 𝑧 ∈ (Base‘𝐾)) ∧ (((0.‘𝐾)(lt‘𝐾)𝑥𝑥(lt‘𝐾)𝑦) ∧ (𝑦(lt‘𝐾)𝑧𝑧(lt‘𝐾)(1.‘𝐾))) ∧ 𝑝𝐴) → (0.‘𝐾)𝐶((0.‘𝐾) 𝑝))
2928biantrurd 531 . . . . . . . . . . 11 (((𝐾 ∈ HL ∧ (𝑥 ∈ (Base‘𝐾) ∧ 𝑦 ∈ (Base‘𝐾)) ∧ 𝑧 ∈ (Base‘𝐾)) ∧ (((0.‘𝐾)(lt‘𝐾)𝑥𝑥(lt‘𝐾)𝑦) ∧ (𝑦(lt‘𝐾)𝑧𝑧(lt‘𝐾)(1.‘𝐾))) ∧ 𝑝𝐴) → (((0.‘𝐾) 𝑝)(le‘𝐾)𝑥 ↔ ((0.‘𝐾)𝐶((0.‘𝐾) 𝑝) ∧ ((0.‘𝐾) 𝑝)(le‘𝐾)𝑥)))
3027breq1d 5159 . . . . . . . . . . 11 (((𝐾 ∈ HL ∧ (𝑥 ∈ (Base‘𝐾) ∧ 𝑦 ∈ (Base‘𝐾)) ∧ 𝑧 ∈ (Base‘𝐾)) ∧ (((0.‘𝐾)(lt‘𝐾)𝑥𝑥(lt‘𝐾)𝑦) ∧ (𝑦(lt‘𝐾)𝑧𝑧(lt‘𝐾)(1.‘𝐾))) ∧ 𝑝𝐴) → (((0.‘𝐾) 𝑝)(le‘𝐾)𝑥𝑝(le‘𝐾)𝑥))
3129, 30bitr3d 280 . . . . . . . . . 10 (((𝐾 ∈ HL ∧ (𝑥 ∈ (Base‘𝐾) ∧ 𝑦 ∈ (Base‘𝐾)) ∧ 𝑧 ∈ (Base‘𝐾)) ∧ (((0.‘𝐾)(lt‘𝐾)𝑥𝑥(lt‘𝐾)𝑦) ∧ (𝑦(lt‘𝐾)𝑧𝑧(lt‘𝐾)(1.‘𝐾))) ∧ 𝑝𝐴) → (((0.‘𝐾)𝐶((0.‘𝐾) 𝑝) ∧ ((0.‘𝐾) 𝑝)(le‘𝐾)𝑥) ↔ 𝑝(le‘𝐾)𝑥))
32313expa 1115 . . . . . . . . 9 ((((𝐾 ∈ HL ∧ (𝑥 ∈ (Base‘𝐾) ∧ 𝑦 ∈ (Base‘𝐾)) ∧ 𝑧 ∈ (Base‘𝐾)) ∧ (((0.‘𝐾)(lt‘𝐾)𝑥𝑥(lt‘𝐾)𝑦) ∧ (𝑦(lt‘𝐾)𝑧𝑧(lt‘𝐾)(1.‘𝐾)))) ∧ 𝑝𝐴) → (((0.‘𝐾)𝐶((0.‘𝐾) 𝑝) ∧ ((0.‘𝐾) 𝑝)(le‘𝐾)𝑥) ↔ 𝑝(le‘𝐾)𝑥))
3332rexbidva 3166 . . . . . . . 8 (((𝐾 ∈ HL ∧ (𝑥 ∈ (Base‘𝐾) ∧ 𝑦 ∈ (Base‘𝐾)) ∧ 𝑧 ∈ (Base‘𝐾)) ∧ (((0.‘𝐾)(lt‘𝐾)𝑥𝑥(lt‘𝐾)𝑦) ∧ (𝑦(lt‘𝐾)𝑧𝑧(lt‘𝐾)(1.‘𝐾)))) → (∃𝑝𝐴 ((0.‘𝐾)𝐶((0.‘𝐾) 𝑝) ∧ ((0.‘𝐾) 𝑝)(le‘𝐾)𝑥) ↔ ∃𝑝𝐴 𝑝(le‘𝐾)𝑥))
3417, 33mpbid 231 . . . . . . 7 (((𝐾 ∈ HL ∧ (𝑥 ∈ (Base‘𝐾) ∧ 𝑦 ∈ (Base‘𝐾)) ∧ 𝑧 ∈ (Base‘𝐾)) ∧ (((0.‘𝐾)(lt‘𝐾)𝑥𝑥(lt‘𝐾)𝑦) ∧ (𝑦(lt‘𝐾)𝑧𝑧(lt‘𝐾)(1.‘𝐾)))) → ∃𝑝𝐴 𝑝(le‘𝐾)𝑥)
35 simp11 1200 . . . . . . . . . . . 12 (((𝐾 ∈ HL ∧ (𝑥 ∈ (Base‘𝐾) ∧ 𝑦 ∈ (Base‘𝐾)) ∧ 𝑧 ∈ (Base‘𝐾)) ∧ (((0.‘𝐾)(lt‘𝐾)𝑥𝑥(lt‘𝐾)𝑦) ∧ (𝑦(lt‘𝐾)𝑧𝑧(lt‘𝐾)(1.‘𝐾))) ∧ (𝑝𝐴𝑝(le‘𝐾)𝑥)) → 𝐾 ∈ HL)
36253adant3r 1178 . . . . . . . . . . . 12 (((𝐾 ∈ HL ∧ (𝑥 ∈ (Base‘𝐾) ∧ 𝑦 ∈ (Base‘𝐾)) ∧ 𝑧 ∈ (Base‘𝐾)) ∧ (((0.‘𝐾)(lt‘𝐾)𝑥𝑥(lt‘𝐾)𝑦) ∧ (𝑦(lt‘𝐾)𝑧𝑧(lt‘𝐾)(1.‘𝐾))) ∧ (𝑝𝐴𝑝(le‘𝐾)𝑥)) → 𝑝 ∈ (Base‘𝐾))
37 simp12r 1284 . . . . . . . . . . . 12 (((𝐾 ∈ HL ∧ (𝑥 ∈ (Base‘𝐾) ∧ 𝑦 ∈ (Base‘𝐾)) ∧ 𝑧 ∈ (Base‘𝐾)) ∧ (((0.‘𝐾)(lt‘𝐾)𝑥𝑥(lt‘𝐾)𝑦) ∧ (𝑦(lt‘𝐾)𝑧𝑧(lt‘𝐾)(1.‘𝐾))) ∧ (𝑝𝐴𝑝(le‘𝐾)𝑥)) → 𝑦 ∈ (Base‘𝐾))
38 simp3r 1199 . . . . . . . . . . . . 13 (((𝐾 ∈ HL ∧ (𝑥 ∈ (Base‘𝐾) ∧ 𝑦 ∈ (Base‘𝐾)) ∧ 𝑧 ∈ (Base‘𝐾)) ∧ (((0.‘𝐾)(lt‘𝐾)𝑥𝑥(lt‘𝐾)𝑦) ∧ (𝑦(lt‘𝐾)𝑧𝑧(lt‘𝐾)(1.‘𝐾))) ∧ (𝑝𝐴𝑝(le‘𝐾)𝑥)) → 𝑝(le‘𝐾)𝑥)
39 simp2lr 1238 . . . . . . . . . . . . 13 (((𝐾 ∈ HL ∧ (𝑥 ∈ (Base‘𝐾) ∧ 𝑦 ∈ (Base‘𝐾)) ∧ 𝑧 ∈ (Base‘𝐾)) ∧ (((0.‘𝐾)(lt‘𝐾)𝑥𝑥(lt‘𝐾)𝑦) ∧ (𝑦(lt‘𝐾)𝑧𝑧(lt‘𝐾)(1.‘𝐾))) ∧ (𝑝𝐴𝑝(le‘𝐾)𝑥)) → 𝑥(lt‘𝐾)𝑦)
40 hlpos 38965 . . . . . . . . . . . . . . 15 (𝐾 ∈ HL → 𝐾 ∈ Poset)
4135, 40syl 17 . . . . . . . . . . . . . 14 (((𝐾 ∈ HL ∧ (𝑥 ∈ (Base‘𝐾) ∧ 𝑦 ∈ (Base‘𝐾)) ∧ 𝑧 ∈ (Base‘𝐾)) ∧ (((0.‘𝐾)(lt‘𝐾)𝑥𝑥(lt‘𝐾)𝑦) ∧ (𝑦(lt‘𝐾)𝑧𝑧(lt‘𝐾)(1.‘𝐾))) ∧ (𝑝𝐴𝑝(le‘𝐾)𝑥)) → 𝐾 ∈ Poset)
42 simp12l 1283 . . . . . . . . . . . . . 14 (((𝐾 ∈ HL ∧ (𝑥 ∈ (Base‘𝐾) ∧ 𝑦 ∈ (Base‘𝐾)) ∧ 𝑧 ∈ (Base‘𝐾)) ∧ (((0.‘𝐾)(lt‘𝐾)𝑥𝑥(lt‘𝐾)𝑦) ∧ (𝑦(lt‘𝐾)𝑧𝑧(lt‘𝐾)(1.‘𝐾))) ∧ (𝑝𝐴𝑝(le‘𝐾)𝑥)) → 𝑥 ∈ (Base‘𝐾))
431, 12, 2plelttr 18339 . . . . . . . . . . . . . 14 ((𝐾 ∈ Poset ∧ (𝑝 ∈ (Base‘𝐾) ∧ 𝑥 ∈ (Base‘𝐾) ∧ 𝑦 ∈ (Base‘𝐾))) → ((𝑝(le‘𝐾)𝑥𝑥(lt‘𝐾)𝑦) → 𝑝(lt‘𝐾)𝑦))
4441, 36, 42, 37, 43syl13anc 1369 . . . . . . . . . . . . 13 (((𝐾 ∈ HL ∧ (𝑥 ∈ (Base‘𝐾) ∧ 𝑦 ∈ (Base‘𝐾)) ∧ 𝑧 ∈ (Base‘𝐾)) ∧ (((0.‘𝐾)(lt‘𝐾)𝑥𝑥(lt‘𝐾)𝑦) ∧ (𝑦(lt‘𝐾)𝑧𝑧(lt‘𝐾)(1.‘𝐾))) ∧ (𝑝𝐴𝑝(le‘𝐾)𝑥)) → ((𝑝(le‘𝐾)𝑥𝑥(lt‘𝐾)𝑦) → 𝑝(lt‘𝐾)𝑦))
4538, 39, 44mp2and 697 . . . . . . . . . . . 12 (((𝐾 ∈ HL ∧ (𝑥 ∈ (Base‘𝐾) ∧ 𝑦 ∈ (Base‘𝐾)) ∧ 𝑧 ∈ (Base‘𝐾)) ∧ (((0.‘𝐾)(lt‘𝐾)𝑥𝑥(lt‘𝐾)𝑦) ∧ (𝑦(lt‘𝐾)𝑧𝑧(lt‘𝐾)(1.‘𝐾))) ∧ (𝑝𝐴𝑝(le‘𝐾)𝑥)) → 𝑝(lt‘𝐾)𝑦)
461, 12, 2, 13, 14, 15hlrelat3 39012 . . . . . . . . . . . 12 (((𝐾 ∈ HL ∧ 𝑝 ∈ (Base‘𝐾) ∧ 𝑦 ∈ (Base‘𝐾)) ∧ 𝑝(lt‘𝐾)𝑦) → ∃𝑞𝐴 (𝑝𝐶(𝑝 𝑞) ∧ (𝑝 𝑞)(le‘𝐾)𝑦))
4735, 36, 37, 45, 46syl31anc 1370 . . . . . . . . . . 11 (((𝐾 ∈ HL ∧ (𝑥 ∈ (Base‘𝐾) ∧ 𝑦 ∈ (Base‘𝐾)) ∧ 𝑧 ∈ (Base‘𝐾)) ∧ (((0.‘𝐾)(lt‘𝐾)𝑥𝑥(lt‘𝐾)𝑦) ∧ (𝑦(lt‘𝐾)𝑧𝑧(lt‘𝐾)(1.‘𝐾))) ∧ (𝑝𝐴𝑝(le‘𝐾)𝑥)) → ∃𝑞𝐴 (𝑝𝐶(𝑝 𝑞) ∧ (𝑝 𝑞)(le‘𝐾)𝑦))
48 simp11 1200 . . . . . . . . . . . . . . . . . . . . . 22 (((𝐾 ∈ HL ∧ 𝑦 ∈ (Base‘𝐾) ∧ 𝑧 ∈ (Base‘𝐾)) ∧ (𝑦(lt‘𝐾)𝑧𝑧(lt‘𝐾)(1.‘𝐾)) ∧ ((𝑝𝐴𝑞𝐴) ∧ (𝑝 𝑞)(le‘𝐾)𝑦)) → 𝐾 ∈ HL)
4948hllatd 38963 . . . . . . . . . . . . . . . . . . . . . . 23 (((𝐾 ∈ HL ∧ 𝑦 ∈ (Base‘𝐾) ∧ 𝑧 ∈ (Base‘𝐾)) ∧ (𝑦(lt‘𝐾)𝑧𝑧(lt‘𝐾)(1.‘𝐾)) ∧ ((𝑝𝐴𝑞𝐴) ∧ (𝑝 𝑞)(le‘𝐾)𝑦)) → 𝐾 ∈ Lat)
50 simp3ll 1241 . . . . . . . . . . . . . . . . . . . . . . . 24 (((𝐾 ∈ HL ∧ 𝑦 ∈ (Base‘𝐾) ∧ 𝑧 ∈ (Base‘𝐾)) ∧ (𝑦(lt‘𝐾)𝑧𝑧(lt‘𝐾)(1.‘𝐾)) ∧ ((𝑝𝐴𝑞𝐴) ∧ (𝑝 𝑞)(le‘𝐾)𝑦)) → 𝑝𝐴)
5150, 24syl 17 . . . . . . . . . . . . . . . . . . . . . . 23 (((𝐾 ∈ HL ∧ 𝑦 ∈ (Base‘𝐾) ∧ 𝑧 ∈ (Base‘𝐾)) ∧ (𝑦(lt‘𝐾)𝑧𝑧(lt‘𝐾)(1.‘𝐾)) ∧ ((𝑝𝐴𝑞𝐴) ∧ (𝑝 𝑞)(le‘𝐾)𝑦)) → 𝑝 ∈ (Base‘𝐾))
52 simp3lr 1242 . . . . . . . . . . . . . . . . . . . . . . . 24 (((𝐾 ∈ HL ∧ 𝑦 ∈ (Base‘𝐾) ∧ 𝑧 ∈ (Base‘𝐾)) ∧ (𝑦(lt‘𝐾)𝑧𝑧(lt‘𝐾)(1.‘𝐾)) ∧ ((𝑝𝐴𝑞𝐴) ∧ (𝑝 𝑞)(le‘𝐾)𝑦)) → 𝑞𝐴)
531, 15atbase 38888 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑞𝐴𝑞 ∈ (Base‘𝐾))
5452, 53syl 17 . . . . . . . . . . . . . . . . . . . . . . 23 (((𝐾 ∈ HL ∧ 𝑦 ∈ (Base‘𝐾) ∧ 𝑧 ∈ (Base‘𝐾)) ∧ (𝑦(lt‘𝐾)𝑧𝑧(lt‘𝐾)(1.‘𝐾)) ∧ ((𝑝𝐴𝑞𝐴) ∧ (𝑝 𝑞)(le‘𝐾)𝑦)) → 𝑞 ∈ (Base‘𝐾))
551, 13latjcl 18434 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝐾 ∈ Lat ∧ 𝑝 ∈ (Base‘𝐾) ∧ 𝑞 ∈ (Base‘𝐾)) → (𝑝 𝑞) ∈ (Base‘𝐾))
5649, 51, 54, 55syl3anc 1368 . . . . . . . . . . . . . . . . . . . . . 22 (((𝐾 ∈ HL ∧ 𝑦 ∈ (Base‘𝐾) ∧ 𝑧 ∈ (Base‘𝐾)) ∧ (𝑦(lt‘𝐾)𝑧𝑧(lt‘𝐾)(1.‘𝐾)) ∧ ((𝑝𝐴𝑞𝐴) ∧ (𝑝 𝑞)(le‘𝐾)𝑦)) → (𝑝 𝑞) ∈ (Base‘𝐾))
57 simp13 1202 . . . . . . . . . . . . . . . . . . . . . 22 (((𝐾 ∈ HL ∧ 𝑦 ∈ (Base‘𝐾) ∧ 𝑧 ∈ (Base‘𝐾)) ∧ (𝑦(lt‘𝐾)𝑧𝑧(lt‘𝐾)(1.‘𝐾)) ∧ ((𝑝𝐴𝑞𝐴) ∧ (𝑝 𝑞)(le‘𝐾)𝑦)) → 𝑧 ∈ (Base‘𝐾))
58 simp3r 1199 . . . . . . . . . . . . . . . . . . . . . . 23 (((𝐾 ∈ HL ∧ 𝑦 ∈ (Base‘𝐾) ∧ 𝑧 ∈ (Base‘𝐾)) ∧ (𝑦(lt‘𝐾)𝑧𝑧(lt‘𝐾)(1.‘𝐾)) ∧ ((𝑝𝐴𝑞𝐴) ∧ (𝑝 𝑞)(le‘𝐾)𝑦)) → (𝑝 𝑞)(le‘𝐾)𝑦)
59 simp2l 1196 . . . . . . . . . . . . . . . . . . . . . . 23 (((𝐾 ∈ HL ∧ 𝑦 ∈ (Base‘𝐾) ∧ 𝑧 ∈ (Base‘𝐾)) ∧ (𝑦(lt‘𝐾)𝑧𝑧(lt‘𝐾)(1.‘𝐾)) ∧ ((𝑝𝐴𝑞𝐴) ∧ (𝑝 𝑞)(le‘𝐾)𝑦)) → 𝑦(lt‘𝐾)𝑧)
6048, 40syl 17 . . . . . . . . . . . . . . . . . . . . . . . 24 (((𝐾 ∈ HL ∧ 𝑦 ∈ (Base‘𝐾) ∧ 𝑧 ∈ (Base‘𝐾)) ∧ (𝑦(lt‘𝐾)𝑧𝑧(lt‘𝐾)(1.‘𝐾)) ∧ ((𝑝𝐴𝑞𝐴) ∧ (𝑝 𝑞)(le‘𝐾)𝑦)) → 𝐾 ∈ Poset)
61 simp12 1201 . . . . . . . . . . . . . . . . . . . . . . . 24 (((𝐾 ∈ HL ∧ 𝑦 ∈ (Base‘𝐾) ∧ 𝑧 ∈ (Base‘𝐾)) ∧ (𝑦(lt‘𝐾)𝑧𝑧(lt‘𝐾)(1.‘𝐾)) ∧ ((𝑝𝐴𝑞𝐴) ∧ (𝑝 𝑞)(le‘𝐾)𝑦)) → 𝑦 ∈ (Base‘𝐾))
621, 12, 2plelttr 18339 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝐾 ∈ Poset ∧ ((𝑝 𝑞) ∈ (Base‘𝐾) ∧ 𝑦 ∈ (Base‘𝐾) ∧ 𝑧 ∈ (Base‘𝐾))) → (((𝑝 𝑞)(le‘𝐾)𝑦𝑦(lt‘𝐾)𝑧) → (𝑝 𝑞)(lt‘𝐾)𝑧))
6360, 56, 61, 57, 62syl13anc 1369 . . . . . . . . . . . . . . . . . . . . . . 23 (((𝐾 ∈ HL ∧ 𝑦 ∈ (Base‘𝐾) ∧ 𝑧 ∈ (Base‘𝐾)) ∧ (𝑦(lt‘𝐾)𝑧𝑧(lt‘𝐾)(1.‘𝐾)) ∧ ((𝑝𝐴𝑞𝐴) ∧ (𝑝 𝑞)(le‘𝐾)𝑦)) → (((𝑝 𝑞)(le‘𝐾)𝑦𝑦(lt‘𝐾)𝑧) → (𝑝 𝑞)(lt‘𝐾)𝑧))
6458, 59, 63mp2and 697 . . . . . . . . . . . . . . . . . . . . . 22 (((𝐾 ∈ HL ∧ 𝑦 ∈ (Base‘𝐾) ∧ 𝑧 ∈ (Base‘𝐾)) ∧ (𝑦(lt‘𝐾)𝑧𝑧(lt‘𝐾)(1.‘𝐾)) ∧ ((𝑝𝐴𝑞𝐴) ∧ (𝑝 𝑞)(le‘𝐾)𝑦)) → (𝑝 𝑞)(lt‘𝐾)𝑧)
651, 12, 2, 13, 14, 15hlrelat3 39012 . . . . . . . . . . . . . . . . . . . . . 22 (((𝐾 ∈ HL ∧ (𝑝 𝑞) ∈ (Base‘𝐾) ∧ 𝑧 ∈ (Base‘𝐾)) ∧ (𝑝 𝑞)(lt‘𝐾)𝑧) → ∃𝑟𝐴 ((𝑝 𝑞)𝐶((𝑝 𝑞) 𝑟) ∧ ((𝑝 𝑞) 𝑟)(le‘𝐾)𝑧))
6648, 56, 57, 64, 65syl31anc 1370 . . . . . . . . . . . . . . . . . . . . 21 (((𝐾 ∈ HL ∧ 𝑦 ∈ (Base‘𝐾) ∧ 𝑧 ∈ (Base‘𝐾)) ∧ (𝑦(lt‘𝐾)𝑧𝑧(lt‘𝐾)(1.‘𝐾)) ∧ ((𝑝𝐴𝑞𝐴) ∧ (𝑝 𝑞)(le‘𝐾)𝑦)) → ∃𝑟𝐴 ((𝑝 𝑞)𝐶((𝑝 𝑞) 𝑟) ∧ ((𝑝 𝑞) 𝑟)(le‘𝐾)𝑧))
67 simp1ll 1233 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 ((((𝐾 ∈ HL ∧ 𝑧 ∈ (Base‘𝐾)) ∧ 𝑧(lt‘𝐾)(1.‘𝐾)) ∧ ((𝑝𝐴𝑞𝐴) ∧ (𝑝 𝑞)(le‘𝐾)𝑦) ∧ (𝑟𝐴 ∧ ((𝑝 𝑞) 𝑟)(le‘𝐾)𝑧)) → 𝐾 ∈ HL)
6867hllatd 38963 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 ((((𝐾 ∈ HL ∧ 𝑧 ∈ (Base‘𝐾)) ∧ 𝑧(lt‘𝐾)(1.‘𝐾)) ∧ ((𝑝𝐴𝑞𝐴) ∧ (𝑝 𝑞)(le‘𝐾)𝑦) ∧ (𝑟𝐴 ∧ ((𝑝 𝑞) 𝑟)(le‘𝐾)𝑧)) → 𝐾 ∈ Lat)
69 simp2ll 1237 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 ((((𝐾 ∈ HL ∧ 𝑧 ∈ (Base‘𝐾)) ∧ 𝑧(lt‘𝐾)(1.‘𝐾)) ∧ ((𝑝𝐴𝑞𝐴) ∧ (𝑝 𝑞)(le‘𝐾)𝑦) ∧ (𝑟𝐴 ∧ ((𝑝 𝑞) 𝑟)(le‘𝐾)𝑧)) → 𝑝𝐴)
7069, 24syl 17 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 ((((𝐾 ∈ HL ∧ 𝑧 ∈ (Base‘𝐾)) ∧ 𝑧(lt‘𝐾)(1.‘𝐾)) ∧ ((𝑝𝐴𝑞𝐴) ∧ (𝑝 𝑞)(le‘𝐾)𝑦) ∧ (𝑟𝐴 ∧ ((𝑝 𝑞) 𝑟)(le‘𝐾)𝑧)) → 𝑝 ∈ (Base‘𝐾))
71 simp2lr 1238 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 ((((𝐾 ∈ HL ∧ 𝑧 ∈ (Base‘𝐾)) ∧ 𝑧(lt‘𝐾)(1.‘𝐾)) ∧ ((𝑝𝐴𝑞𝐴) ∧ (𝑝 𝑞)(le‘𝐾)𝑦) ∧ (𝑟𝐴 ∧ ((𝑝 𝑞) 𝑟)(le‘𝐾)𝑧)) → 𝑞𝐴)
7271, 53syl 17 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 ((((𝐾 ∈ HL ∧ 𝑧 ∈ (Base‘𝐾)) ∧ 𝑧(lt‘𝐾)(1.‘𝐾)) ∧ ((𝑝𝐴𝑞𝐴) ∧ (𝑝 𝑞)(le‘𝐾)𝑦) ∧ (𝑟𝐴 ∧ ((𝑝 𝑞) 𝑟)(le‘𝐾)𝑧)) → 𝑞 ∈ (Base‘𝐾))
7368, 70, 72, 55syl3anc 1368 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 ((((𝐾 ∈ HL ∧ 𝑧 ∈ (Base‘𝐾)) ∧ 𝑧(lt‘𝐾)(1.‘𝐾)) ∧ ((𝑝𝐴𝑞𝐴) ∧ (𝑝 𝑞)(le‘𝐾)𝑦) ∧ (𝑟𝐴 ∧ ((𝑝 𝑞) 𝑟)(le‘𝐾)𝑧)) → (𝑝 𝑞) ∈ (Base‘𝐾))
74 simp3l 1198 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 ((((𝐾 ∈ HL ∧ 𝑧 ∈ (Base‘𝐾)) ∧ 𝑧(lt‘𝐾)(1.‘𝐾)) ∧ ((𝑝𝐴𝑞𝐴) ∧ (𝑝 𝑞)(le‘𝐾)𝑦) ∧ (𝑟𝐴 ∧ ((𝑝 𝑞) 𝑟)(le‘𝐾)𝑧)) → 𝑟𝐴)
751, 15atbase 38888 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 (𝑟𝐴𝑟 ∈ (Base‘𝐾))
7674, 75syl 17 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 ((((𝐾 ∈ HL ∧ 𝑧 ∈ (Base‘𝐾)) ∧ 𝑧(lt‘𝐾)(1.‘𝐾)) ∧ ((𝑝𝐴𝑞𝐴) ∧ (𝑝 𝑞)(le‘𝐾)𝑦) ∧ (𝑟𝐴 ∧ ((𝑝 𝑞) 𝑟)(le‘𝐾)𝑧)) → 𝑟 ∈ (Base‘𝐾))
771, 13latjcl 18434 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 ((𝐾 ∈ Lat ∧ (𝑝 𝑞) ∈ (Base‘𝐾) ∧ 𝑟 ∈ (Base‘𝐾)) → ((𝑝 𝑞) 𝑟) ∈ (Base‘𝐾))
7868, 73, 76, 77syl3anc 1368 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 ((((𝐾 ∈ HL ∧ 𝑧 ∈ (Base‘𝐾)) ∧ 𝑧(lt‘𝐾)(1.‘𝐾)) ∧ ((𝑝𝐴𝑞𝐴) ∧ (𝑝 𝑞)(le‘𝐾)𝑦) ∧ (𝑟𝐴 ∧ ((𝑝 𝑞) 𝑟)(le‘𝐾)𝑧)) → ((𝑝 𝑞) 𝑟) ∈ (Base‘𝐾))
791, 4op1cl 38784 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 (𝐾 ∈ OP → (1.‘𝐾) ∈ (Base‘𝐾))
8067, 7, 793syl 18 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 ((((𝐾 ∈ HL ∧ 𝑧 ∈ (Base‘𝐾)) ∧ 𝑧(lt‘𝐾)(1.‘𝐾)) ∧ ((𝑝𝐴𝑞𝐴) ∧ (𝑝 𝑞)(le‘𝐾)𝑦) ∧ (𝑟𝐴 ∧ ((𝑝 𝑞) 𝑟)(le‘𝐾)𝑧)) → (1.‘𝐾) ∈ (Base‘𝐾))
81 simp3r 1199 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 ((((𝐾 ∈ HL ∧ 𝑧 ∈ (Base‘𝐾)) ∧ 𝑧(lt‘𝐾)(1.‘𝐾)) ∧ ((𝑝𝐴𝑞𝐴) ∧ (𝑝 𝑞)(le‘𝐾)𝑦) ∧ (𝑟𝐴 ∧ ((𝑝 𝑞) 𝑟)(le‘𝐾)𝑧)) → ((𝑝 𝑞) 𝑟)(le‘𝐾)𝑧)
82 simp1r 1195 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 ((((𝐾 ∈ HL ∧ 𝑧 ∈ (Base‘𝐾)) ∧ 𝑧(lt‘𝐾)(1.‘𝐾)) ∧ ((𝑝𝐴𝑞𝐴) ∧ (𝑝 𝑞)(le‘𝐾)𝑦) ∧ (𝑟𝐴 ∧ ((𝑝 𝑞) 𝑟)(le‘𝐾)𝑧)) → 𝑧(lt‘𝐾)(1.‘𝐾))
8367, 40syl 17 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 ((((𝐾 ∈ HL ∧ 𝑧 ∈ (Base‘𝐾)) ∧ 𝑧(lt‘𝐾)(1.‘𝐾)) ∧ ((𝑝𝐴𝑞𝐴) ∧ (𝑝 𝑞)(le‘𝐾)𝑦) ∧ (𝑟𝐴 ∧ ((𝑝 𝑞) 𝑟)(le‘𝐾)𝑧)) → 𝐾 ∈ Poset)
84 simp1lr 1234 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 ((((𝐾 ∈ HL ∧ 𝑧 ∈ (Base‘𝐾)) ∧ 𝑧(lt‘𝐾)(1.‘𝐾)) ∧ ((𝑝𝐴𝑞𝐴) ∧ (𝑝 𝑞)(le‘𝐾)𝑦) ∧ (𝑟𝐴 ∧ ((𝑝 𝑞) 𝑟)(le‘𝐾)𝑧)) → 𝑧 ∈ (Base‘𝐾))
851, 12, 2plelttr 18339 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 ((𝐾 ∈ Poset ∧ (((𝑝 𝑞) 𝑟) ∈ (Base‘𝐾) ∧ 𝑧 ∈ (Base‘𝐾) ∧ (1.‘𝐾) ∈ (Base‘𝐾))) → ((((𝑝 𝑞) 𝑟)(le‘𝐾)𝑧𝑧(lt‘𝐾)(1.‘𝐾)) → ((𝑝 𝑞) 𝑟)(lt‘𝐾)(1.‘𝐾)))
8683, 78, 84, 80, 85syl13anc 1369 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 ((((𝐾 ∈ HL ∧ 𝑧 ∈ (Base‘𝐾)) ∧ 𝑧(lt‘𝐾)(1.‘𝐾)) ∧ ((𝑝𝐴𝑞𝐴) ∧ (𝑝 𝑞)(le‘𝐾)𝑦) ∧ (𝑟𝐴 ∧ ((𝑝 𝑞) 𝑟)(le‘𝐾)𝑧)) → ((((𝑝 𝑞) 𝑟)(le‘𝐾)𝑧𝑧(lt‘𝐾)(1.‘𝐾)) → ((𝑝 𝑞) 𝑟)(lt‘𝐾)(1.‘𝐾)))
8781, 82, 86mp2and 697 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 ((((𝐾 ∈ HL ∧ 𝑧 ∈ (Base‘𝐾)) ∧ 𝑧(lt‘𝐾)(1.‘𝐾)) ∧ ((𝑝𝐴𝑞𝐴) ∧ (𝑝 𝑞)(le‘𝐾)𝑦) ∧ (𝑟𝐴 ∧ ((𝑝 𝑞) 𝑟)(le‘𝐾)𝑧)) → ((𝑝 𝑞) 𝑟)(lt‘𝐾)(1.‘𝐾))
881, 12, 2, 13, 14, 15hlrelat3 39012 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 (((𝐾 ∈ HL ∧ ((𝑝 𝑞) 𝑟) ∈ (Base‘𝐾) ∧ (1.‘𝐾) ∈ (Base‘𝐾)) ∧ ((𝑝 𝑞) 𝑟)(lt‘𝐾)(1.‘𝐾)) → ∃𝑠𝐴 (((𝑝 𝑞) 𝑟)𝐶(((𝑝 𝑞) 𝑟) 𝑠) ∧ (((𝑝 𝑞) 𝑟) 𝑠)(le‘𝐾)(1.‘𝐾)))
8967, 78, 80, 87, 88syl31anc 1370 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 ((((𝐾 ∈ HL ∧ 𝑧 ∈ (Base‘𝐾)) ∧ 𝑧(lt‘𝐾)(1.‘𝐾)) ∧ ((𝑝𝐴𝑞𝐴) ∧ (𝑝 𝑞)(le‘𝐾)𝑦) ∧ (𝑟𝐴 ∧ ((𝑝 𝑞) 𝑟)(le‘𝐾)𝑧)) → ∃𝑠𝐴 (((𝑝 𝑞) 𝑟)𝐶(((𝑝 𝑞) 𝑟) 𝑠) ∧ (((𝑝 𝑞) 𝑟) 𝑠)(le‘𝐾)(1.‘𝐾)))
90 simpl 481 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 ((((𝑝 𝑞) 𝑟)𝐶(((𝑝 𝑞) 𝑟) 𝑠) ∧ (((𝑝 𝑞) 𝑟) 𝑠)(le‘𝐾)(1.‘𝐾)) → ((𝑝 𝑞) 𝑟)𝐶(((𝑝 𝑞) 𝑟) 𝑠))
9190reximi 3073 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 (∃𝑠𝐴 (((𝑝 𝑞) 𝑟)𝐶(((𝑝 𝑞) 𝑟) 𝑠) ∧ (((𝑝 𝑞) 𝑟) 𝑠)(le‘𝐾)(1.‘𝐾)) → ∃𝑠𝐴 ((𝑝 𝑞) 𝑟)𝐶(((𝑝 𝑞) 𝑟) 𝑠))
9289, 91syl 17 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 ((((𝐾 ∈ HL ∧ 𝑧 ∈ (Base‘𝐾)) ∧ 𝑧(lt‘𝐾)(1.‘𝐾)) ∧ ((𝑝𝐴𝑞𝐴) ∧ (𝑝 𝑞)(le‘𝐾)𝑦) ∧ (𝑟𝐴 ∧ ((𝑝 𝑞) 𝑟)(le‘𝐾)𝑧)) → ∃𝑠𝐴 ((𝑝 𝑞) 𝑟)𝐶(((𝑝 𝑞) 𝑟) 𝑠))
93923exp 1116 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 (((𝐾 ∈ HL ∧ 𝑧 ∈ (Base‘𝐾)) ∧ 𝑧(lt‘𝐾)(1.‘𝐾)) → (((𝑝𝐴𝑞𝐴) ∧ (𝑝 𝑞)(le‘𝐾)𝑦) → ((𝑟𝐴 ∧ ((𝑝 𝑞) 𝑟)(le‘𝐾)𝑧) → ∃𝑠𝐴 ((𝑝 𝑞) 𝑟)𝐶(((𝑝 𝑞) 𝑟) 𝑠))))
9493exp4a 430 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (((𝐾 ∈ HL ∧ 𝑧 ∈ (Base‘𝐾)) ∧ 𝑧(lt‘𝐾)(1.‘𝐾)) → (((𝑝𝐴𝑞𝐴) ∧ (𝑝 𝑞)(le‘𝐾)𝑦) → (𝑟𝐴 → (((𝑝 𝑞) 𝑟)(le‘𝐾)𝑧 → ∃𝑠𝐴 ((𝑝 𝑞) 𝑟)𝐶(((𝑝 𝑞) 𝑟) 𝑠)))))
9594ex 411 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((𝐾 ∈ HL ∧ 𝑧 ∈ (Base‘𝐾)) → (𝑧(lt‘𝐾)(1.‘𝐾) → (((𝑝𝐴𝑞𝐴) ∧ (𝑝 𝑞)(le‘𝐾)𝑦) → (𝑟𝐴 → (((𝑝 𝑞) 𝑟)(le‘𝐾)𝑧 → ∃𝑠𝐴 ((𝑝 𝑞) 𝑟)𝐶(((𝑝 𝑞) 𝑟) 𝑠))))))
96953adant2 1128 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((𝐾 ∈ HL ∧ 𝑦 ∈ (Base‘𝐾) ∧ 𝑧 ∈ (Base‘𝐾)) → (𝑧(lt‘𝐾)(1.‘𝐾) → (((𝑝𝐴𝑞𝐴) ∧ (𝑝 𝑞)(le‘𝐾)𝑦) → (𝑟𝐴 → (((𝑝 𝑞) 𝑟)(le‘𝐾)𝑧 → ∃𝑠𝐴 ((𝑝 𝑞) 𝑟)𝐶(((𝑝 𝑞) 𝑟) 𝑠))))))
97963imp 1108 . . . . . . . . . . . . . . . . . . . . . . . . 25 (((𝐾 ∈ HL ∧ 𝑦 ∈ (Base‘𝐾) ∧ 𝑧 ∈ (Base‘𝐾)) ∧ 𝑧(lt‘𝐾)(1.‘𝐾) ∧ ((𝑝𝐴𝑞𝐴) ∧ (𝑝 𝑞)(le‘𝐾)𝑦)) → (𝑟𝐴 → (((𝑝 𝑞) 𝑟)(le‘𝐾)𝑧 → ∃𝑠𝐴 ((𝑝 𝑞) 𝑟)𝐶(((𝑝 𝑞) 𝑟) 𝑠))))
98973adant2l 1175 . . . . . . . . . . . . . . . . . . . . . . . 24 (((𝐾 ∈ HL ∧ 𝑦 ∈ (Base‘𝐾) ∧ 𝑧 ∈ (Base‘𝐾)) ∧ (𝑦(lt‘𝐾)𝑧𝑧(lt‘𝐾)(1.‘𝐾)) ∧ ((𝑝𝐴𝑞𝐴) ∧ (𝑝 𝑞)(le‘𝐾)𝑦)) → (𝑟𝐴 → (((𝑝 𝑞) 𝑟)(le‘𝐾)𝑧 → ∃𝑠𝐴 ((𝑝 𝑞) 𝑟)𝐶(((𝑝 𝑞) 𝑟) 𝑠))))
9998imp 405 . . . . . . . . . . . . . . . . . . . . . . 23 ((((𝐾 ∈ HL ∧ 𝑦 ∈ (Base‘𝐾) ∧ 𝑧 ∈ (Base‘𝐾)) ∧ (𝑦(lt‘𝐾)𝑧𝑧(lt‘𝐾)(1.‘𝐾)) ∧ ((𝑝𝐴𝑞𝐴) ∧ (𝑝 𝑞)(le‘𝐾)𝑦)) ∧ 𝑟𝐴) → (((𝑝 𝑞) 𝑟)(le‘𝐾)𝑧 → ∃𝑠𝐴 ((𝑝 𝑞) 𝑟)𝐶(((𝑝 𝑞) 𝑟) 𝑠)))
10099anim2d 610 . . . . . . . . . . . . . . . . . . . . . 22 ((((𝐾 ∈ HL ∧ 𝑦 ∈ (Base‘𝐾) ∧ 𝑧 ∈ (Base‘𝐾)) ∧ (𝑦(lt‘𝐾)𝑧𝑧(lt‘𝐾)(1.‘𝐾)) ∧ ((𝑝𝐴𝑞𝐴) ∧ (𝑝 𝑞)(le‘𝐾)𝑦)) ∧ 𝑟𝐴) → (((𝑝 𝑞)𝐶((𝑝 𝑞) 𝑟) ∧ ((𝑝 𝑞) 𝑟)(le‘𝐾)𝑧) → ((𝑝 𝑞)𝐶((𝑝 𝑞) 𝑟) ∧ ∃𝑠𝐴 ((𝑝 𝑞) 𝑟)𝐶(((𝑝 𝑞) 𝑟) 𝑠))))
101100reximdva 3157 . . . . . . . . . . . . . . . . . . . . 21 (((𝐾 ∈ HL ∧ 𝑦 ∈ (Base‘𝐾) ∧ 𝑧 ∈ (Base‘𝐾)) ∧ (𝑦(lt‘𝐾)𝑧𝑧(lt‘𝐾)(1.‘𝐾)) ∧ ((𝑝𝐴𝑞𝐴) ∧ (𝑝 𝑞)(le‘𝐾)𝑦)) → (∃𝑟𝐴 ((𝑝 𝑞)𝐶((𝑝 𝑞) 𝑟) ∧ ((𝑝 𝑞) 𝑟)(le‘𝐾)𝑧) → ∃𝑟𝐴 ((𝑝 𝑞)𝐶((𝑝 𝑞) 𝑟) ∧ ∃𝑠𝐴 ((𝑝 𝑞) 𝑟)𝐶(((𝑝 𝑞) 𝑟) 𝑠))))
10266, 101mpd 15 . . . . . . . . . . . . . . . . . . . 20 (((𝐾 ∈ HL ∧ 𝑦 ∈ (Base‘𝐾) ∧ 𝑧 ∈ (Base‘𝐾)) ∧ (𝑦(lt‘𝐾)𝑧𝑧(lt‘𝐾)(1.‘𝐾)) ∧ ((𝑝𝐴𝑞𝐴) ∧ (𝑝 𝑞)(le‘𝐾)𝑦)) → ∃𝑟𝐴 ((𝑝 𝑞)𝐶((𝑝 𝑞) 𝑟) ∧ ∃𝑠𝐴 ((𝑝 𝑞) 𝑟)𝐶(((𝑝 𝑞) 𝑟) 𝑠)))
1031023exp 1116 . . . . . . . . . . . . . . . . . . 19 ((𝐾 ∈ HL ∧ 𝑦 ∈ (Base‘𝐾) ∧ 𝑧 ∈ (Base‘𝐾)) → ((𝑦(lt‘𝐾)𝑧𝑧(lt‘𝐾)(1.‘𝐾)) → (((𝑝𝐴𝑞𝐴) ∧ (𝑝 𝑞)(le‘𝐾)𝑦) → ∃𝑟𝐴 ((𝑝 𝑞)𝐶((𝑝 𝑞) 𝑟) ∧ ∃𝑠𝐴 ((𝑝 𝑞) 𝑟)𝐶(((𝑝 𝑞) 𝑟) 𝑠)))))
104103exp4a 430 . . . . . . . . . . . . . . . . . 18 ((𝐾 ∈ HL ∧ 𝑦 ∈ (Base‘𝐾) ∧ 𝑧 ∈ (Base‘𝐾)) → ((𝑦(lt‘𝐾)𝑧𝑧(lt‘𝐾)(1.‘𝐾)) → ((𝑝𝐴𝑞𝐴) → ((𝑝 𝑞)(le‘𝐾)𝑦 → ∃𝑟𝐴 ((𝑝 𝑞)𝐶((𝑝 𝑞) 𝑟) ∧ ∃𝑠𝐴 ((𝑝 𝑞) 𝑟)𝐶(((𝑝 𝑞) 𝑟) 𝑠))))))
105104exp4a 430 . . . . . . . . . . . . . . . . 17 ((𝐾 ∈ HL ∧ 𝑦 ∈ (Base‘𝐾) ∧ 𝑧 ∈ (Base‘𝐾)) → ((𝑦(lt‘𝐾)𝑧𝑧(lt‘𝐾)(1.‘𝐾)) → (𝑝𝐴 → (𝑞𝐴 → ((𝑝 𝑞)(le‘𝐾)𝑦 → ∃𝑟𝐴 ((𝑝 𝑞)𝐶((𝑝 𝑞) 𝑟) ∧ ∃𝑠𝐴 ((𝑝 𝑞) 𝑟)𝐶(((𝑝 𝑞) 𝑟) 𝑠)))))))
1061053adant2l 1175 . . . . . . . . . . . . . . . 16 ((𝐾 ∈ HL ∧ (𝑥 ∈ (Base‘𝐾) ∧ 𝑦 ∈ (Base‘𝐾)) ∧ 𝑧 ∈ (Base‘𝐾)) → ((𝑦(lt‘𝐾)𝑧𝑧(lt‘𝐾)(1.‘𝐾)) → (𝑝𝐴 → (𝑞𝐴 → ((𝑝 𝑞)(le‘𝐾)𝑦 → ∃𝑟𝐴 ((𝑝 𝑞)𝐶((𝑝 𝑞) 𝑟) ∧ ∃𝑠𝐴 ((𝑝 𝑞) 𝑟)𝐶(((𝑝 𝑞) 𝑟) 𝑠)))))))
1071063imp1 1344 . . . . . . . . . . . . . . 15 ((((𝐾 ∈ HL ∧ (𝑥 ∈ (Base‘𝐾) ∧ 𝑦 ∈ (Base‘𝐾)) ∧ 𝑧 ∈ (Base‘𝐾)) ∧ (𝑦(lt‘𝐾)𝑧𝑧(lt‘𝐾)(1.‘𝐾)) ∧ 𝑝𝐴) ∧ 𝑞𝐴) → ((𝑝 𝑞)(le‘𝐾)𝑦 → ∃𝑟𝐴 ((𝑝 𝑞)𝐶((𝑝 𝑞) 𝑟) ∧ ∃𝑠𝐴 ((𝑝 𝑞) 𝑟)𝐶(((𝑝 𝑞) 𝑟) 𝑠))))
108107anim2d 610 . . . . . . . . . . . . . 14 ((((𝐾 ∈ HL ∧ (𝑥 ∈ (Base‘𝐾) ∧ 𝑦 ∈ (Base‘𝐾)) ∧ 𝑧 ∈ (Base‘𝐾)) ∧ (𝑦(lt‘𝐾)𝑧𝑧(lt‘𝐾)(1.‘𝐾)) ∧ 𝑝𝐴) ∧ 𝑞𝐴) → ((𝑝𝐶(𝑝 𝑞) ∧ (𝑝 𝑞)(le‘𝐾)𝑦) → (𝑝𝐶(𝑝 𝑞) ∧ ∃𝑟𝐴 ((𝑝 𝑞)𝐶((𝑝 𝑞) 𝑟) ∧ ∃𝑠𝐴 ((𝑝 𝑞) 𝑟)𝐶(((𝑝 𝑞) 𝑟) 𝑠)))))
109108reximdva 3157 . . . . . . . . . . . . 13 (((𝐾 ∈ HL ∧ (𝑥 ∈ (Base‘𝐾) ∧ 𝑦 ∈ (Base‘𝐾)) ∧ 𝑧 ∈ (Base‘𝐾)) ∧ (𝑦(lt‘𝐾)𝑧𝑧(lt‘𝐾)(1.‘𝐾)) ∧ 𝑝𝐴) → (∃𝑞𝐴 (𝑝𝐶(𝑝 𝑞) ∧ (𝑝 𝑞)(le‘𝐾)𝑦) → ∃𝑞𝐴 (𝑝𝐶(𝑝 𝑞) ∧ ∃𝑟𝐴 ((𝑝 𝑞)𝐶((𝑝 𝑞) 𝑟) ∧ ∃𝑠𝐴 ((𝑝 𝑞) 𝑟)𝐶(((𝑝 𝑞) 𝑟) 𝑠)))))
1101093adant2l 1175 . . . . . . . . . . . 12 (((𝐾 ∈ HL ∧ (𝑥 ∈ (Base‘𝐾) ∧ 𝑦 ∈ (Base‘𝐾)) ∧ 𝑧 ∈ (Base‘𝐾)) ∧ (((0.‘𝐾)(lt‘𝐾)𝑥𝑥(lt‘𝐾)𝑦) ∧ (𝑦(lt‘𝐾)𝑧𝑧(lt‘𝐾)(1.‘𝐾))) ∧ 𝑝𝐴) → (∃𝑞𝐴 (𝑝𝐶(𝑝 𝑞) ∧ (𝑝 𝑞)(le‘𝐾)𝑦) → ∃𝑞𝐴 (𝑝𝐶(𝑝 𝑞) ∧ ∃𝑟𝐴 ((𝑝 𝑞)𝐶((𝑝 𝑞) 𝑟) ∧ ∃𝑠𝐴 ((𝑝 𝑞) 𝑟)𝐶(((𝑝 𝑞) 𝑟) 𝑠)))))
1111103adant3r 1178 . . . . . . . . . . 11 (((𝐾 ∈ HL ∧ (𝑥 ∈ (Base‘𝐾) ∧ 𝑦 ∈ (Base‘𝐾)) ∧ 𝑧 ∈ (Base‘𝐾)) ∧ (((0.‘𝐾)(lt‘𝐾)𝑥𝑥(lt‘𝐾)𝑦) ∧ (𝑦(lt‘𝐾)𝑧𝑧(lt‘𝐾)(1.‘𝐾))) ∧ (𝑝𝐴𝑝(le‘𝐾)𝑥)) → (∃𝑞𝐴 (𝑝𝐶(𝑝 𝑞) ∧ (𝑝 𝑞)(le‘𝐾)𝑦) → ∃𝑞𝐴 (𝑝𝐶(𝑝 𝑞) ∧ ∃𝑟𝐴 ((𝑝 𝑞)𝐶((𝑝 𝑞) 𝑟) ∧ ∃𝑠𝐴 ((𝑝 𝑞) 𝑟)𝐶(((𝑝 𝑞) 𝑟) 𝑠)))))
11247, 111mpd 15 . . . . . . . . . 10 (((𝐾 ∈ HL ∧ (𝑥 ∈ (Base‘𝐾) ∧ 𝑦 ∈ (Base‘𝐾)) ∧ 𝑧 ∈ (Base‘𝐾)) ∧ (((0.‘𝐾)(lt‘𝐾)𝑥𝑥(lt‘𝐾)𝑦) ∧ (𝑦(lt‘𝐾)𝑧𝑧(lt‘𝐾)(1.‘𝐾))) ∧ (𝑝𝐴𝑝(le‘𝐾)𝑥)) → ∃𝑞𝐴 (𝑝𝐶(𝑝 𝑞) ∧ ∃𝑟𝐴 ((𝑝 𝑞)𝐶((𝑝 𝑞) 𝑟) ∧ ∃𝑠𝐴 ((𝑝 𝑞) 𝑟)𝐶(((𝑝 𝑞) 𝑟) 𝑠))))
1131123expia 1118 . . . . . . . . 9 (((𝐾 ∈ HL ∧ (𝑥 ∈ (Base‘𝐾) ∧ 𝑦 ∈ (Base‘𝐾)) ∧ 𝑧 ∈ (Base‘𝐾)) ∧ (((0.‘𝐾)(lt‘𝐾)𝑥𝑥(lt‘𝐾)𝑦) ∧ (𝑦(lt‘𝐾)𝑧𝑧(lt‘𝐾)(1.‘𝐾)))) → ((𝑝𝐴𝑝(le‘𝐾)𝑥) → ∃𝑞𝐴 (𝑝𝐶(𝑝 𝑞) ∧ ∃𝑟𝐴 ((𝑝 𝑞)𝐶((𝑝 𝑞) 𝑟) ∧ ∃𝑠𝐴 ((𝑝 𝑞) 𝑟)𝐶(((𝑝 𝑞) 𝑟) 𝑠)))))
114113expd 414 . . . . . . . 8 (((𝐾 ∈ HL ∧ (𝑥 ∈ (Base‘𝐾) ∧ 𝑦 ∈ (Base‘𝐾)) ∧ 𝑧 ∈ (Base‘𝐾)) ∧ (((0.‘𝐾)(lt‘𝐾)𝑥𝑥(lt‘𝐾)𝑦) ∧ (𝑦(lt‘𝐾)𝑧𝑧(lt‘𝐾)(1.‘𝐾)))) → (𝑝𝐴 → (𝑝(le‘𝐾)𝑥 → ∃𝑞𝐴 (𝑝𝐶(𝑝 𝑞) ∧ ∃𝑟𝐴 ((𝑝 𝑞)𝐶((𝑝 𝑞) 𝑟) ∧ ∃𝑠𝐴 ((𝑝 𝑞) 𝑟)𝐶(((𝑝 𝑞) 𝑟) 𝑠))))))
115114reximdvai 3154 . . . . . . 7 (((𝐾 ∈ HL ∧ (𝑥 ∈ (Base‘𝐾) ∧ 𝑦 ∈ (Base‘𝐾)) ∧ 𝑧 ∈ (Base‘𝐾)) ∧ (((0.‘𝐾)(lt‘𝐾)𝑥𝑥(lt‘𝐾)𝑦) ∧ (𝑦(lt‘𝐾)𝑧𝑧(lt‘𝐾)(1.‘𝐾)))) → (∃𝑝𝐴 𝑝(le‘𝐾)𝑥 → ∃𝑝𝐴𝑞𝐴 (𝑝𝐶(𝑝 𝑞) ∧ ∃𝑟𝐴 ((𝑝 𝑞)𝐶((𝑝 𝑞) 𝑟) ∧ ∃𝑠𝐴 ((𝑝 𝑞) 𝑟)𝐶(((𝑝 𝑞) 𝑟) 𝑠)))))
11634, 115mpd 15 . . . . . 6 (((𝐾 ∈ HL ∧ (𝑥 ∈ (Base‘𝐾) ∧ 𝑦 ∈ (Base‘𝐾)) ∧ 𝑧 ∈ (Base‘𝐾)) ∧ (((0.‘𝐾)(lt‘𝐾)𝑥𝑥(lt‘𝐾)𝑦) ∧ (𝑦(lt‘𝐾)𝑧𝑧(lt‘𝐾)(1.‘𝐾)))) → ∃𝑝𝐴𝑞𝐴 (𝑝𝐶(𝑝 𝑞) ∧ ∃𝑟𝐴 ((𝑝 𝑞)𝐶((𝑝 𝑞) 𝑟) ∧ ∃𝑠𝐴 ((𝑝 𝑞) 𝑟)𝐶(((𝑝 𝑞) 𝑟) 𝑠))))
1171163exp1 1349 . . . . 5 (𝐾 ∈ HL → ((𝑥 ∈ (Base‘𝐾) ∧ 𝑦 ∈ (Base‘𝐾)) → (𝑧 ∈ (Base‘𝐾) → ((((0.‘𝐾)(lt‘𝐾)𝑥𝑥(lt‘𝐾)𝑦) ∧ (𝑦(lt‘𝐾)𝑧𝑧(lt‘𝐾)(1.‘𝐾))) → ∃𝑝𝐴𝑞𝐴 (𝑝𝐶(𝑝 𝑞) ∧ ∃𝑟𝐴 ((𝑝 𝑞)𝐶((𝑝 𝑞) 𝑟) ∧ ∃𝑠𝐴 ((𝑝 𝑞) 𝑟)𝐶(((𝑝 𝑞) 𝑟) 𝑠)))))))
118117imp 405 . . . 4 ((𝐾 ∈ HL ∧ (𝑥 ∈ (Base‘𝐾) ∧ 𝑦 ∈ (Base‘𝐾))) → (𝑧 ∈ (Base‘𝐾) → ((((0.‘𝐾)(lt‘𝐾)𝑥𝑥(lt‘𝐾)𝑦) ∧ (𝑦(lt‘𝐾)𝑧𝑧(lt‘𝐾)(1.‘𝐾))) → ∃𝑝𝐴𝑞𝐴 (𝑝𝐶(𝑝 𝑞) ∧ ∃𝑟𝐴 ((𝑝 𝑞)𝐶((𝑝 𝑞) 𝑟) ∧ ∃𝑠𝐴 ((𝑝 𝑞) 𝑟)𝐶(((𝑝 𝑞) 𝑟) 𝑠))))))
119118rexlimdv 3142 . . 3 ((𝐾 ∈ HL ∧ (𝑥 ∈ (Base‘𝐾) ∧ 𝑦 ∈ (Base‘𝐾))) → (∃𝑧 ∈ (Base‘𝐾)(((0.‘𝐾)(lt‘𝐾)𝑥𝑥(lt‘𝐾)𝑦) ∧ (𝑦(lt‘𝐾)𝑧𝑧(lt‘𝐾)(1.‘𝐾))) → ∃𝑝𝐴𝑞𝐴 (𝑝𝐶(𝑝 𝑞) ∧ ∃𝑟𝐴 ((𝑝 𝑞)𝐶((𝑝 𝑞) 𝑟) ∧ ∃𝑠𝐴 ((𝑝 𝑞) 𝑟)𝐶(((𝑝 𝑞) 𝑟) 𝑠)))))
120119rexlimdvva 3201 . 2 (𝐾 ∈ HL → (∃𝑥 ∈ (Base‘𝐾)∃𝑦 ∈ (Base‘𝐾)∃𝑧 ∈ (Base‘𝐾)(((0.‘𝐾)(lt‘𝐾)𝑥𝑥(lt‘𝐾)𝑦) ∧ (𝑦(lt‘𝐾)𝑧𝑧(lt‘𝐾)(1.‘𝐾))) → ∃𝑝𝐴𝑞𝐴 (𝑝𝐶(𝑝 𝑞) ∧ ∃𝑟𝐴 ((𝑝 𝑞)𝐶((𝑝 𝑞) 𝑟) ∧ ∃𝑠𝐴 ((𝑝 𝑞) 𝑟)𝐶(((𝑝 𝑞) 𝑟) 𝑠)))))
1215, 120mpd 15 1 (𝐾 ∈ HL → ∃𝑝𝐴𝑞𝐴 (𝑝𝐶(𝑝 𝑞) ∧ ∃𝑟𝐴 ((𝑝 𝑞)𝐶((𝑝 𝑞) 𝑟) ∧ ∃𝑠𝐴 ((𝑝 𝑞) 𝑟)𝐶(((𝑝 𝑞) 𝑟) 𝑠))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 394  w3a 1084   = wceq 1533  wcel 2098  wrex 3059   class class class wbr 5149  cfv 6549  (class class class)co 7419  Basecbs 17183  lecple 17243  Posetcpo 18302  ltcplt 18303  joincjn 18306  0.cp0 18418  1.cp1 18419  Latclat 18426  OPcops 38771  OLcol 38773  ccvr 38861  Atomscatm 38862  HLchlt 38949
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2166  ax-ext 2696  ax-rep 5286  ax-sep 5300  ax-nul 5307  ax-pow 5365  ax-pr 5429  ax-un 7741
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 846  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2528  df-eu 2557  df-clab 2703  df-cleq 2717  df-clel 2802  df-nfc 2877  df-ne 2930  df-ral 3051  df-rex 3060  df-rmo 3363  df-reu 3364  df-rab 3419  df-v 3463  df-sbc 3774  df-csb 3890  df-dif 3947  df-un 3949  df-in 3951  df-ss 3961  df-nul 4323  df-if 4531  df-pw 4606  df-sn 4631  df-pr 4633  df-op 4637  df-uni 4910  df-iun 4999  df-br 5150  df-opab 5212  df-mpt 5233  df-id 5576  df-xp 5684  df-rel 5685  df-cnv 5686  df-co 5687  df-dm 5688  df-rn 5689  df-res 5690  df-ima 5691  df-iota 6501  df-fun 6551  df-fn 6552  df-f 6553  df-f1 6554  df-fo 6555  df-f1o 6556  df-fv 6557  df-riota 7375  df-ov 7422  df-oprab 7423  df-proset 18290  df-poset 18308  df-plt 18325  df-lub 18341  df-glb 18342  df-join 18343  df-meet 18344  df-p0 18420  df-p1 18421  df-lat 18427  df-clat 18494  df-oposet 38775  df-ol 38777  df-oml 38778  df-covers 38865  df-ats 38866  df-atl 38897  df-cvlat 38921  df-hlat 38950
This theorem is referenced by:  3dim0  39057
  Copyright terms: Public domain W3C validator
OSZAR »