Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  atmod1i1m Structured version   Visualization version   GIF version

Theorem atmod1i1m 39387
Description: Version of modular law pmod1i 39377 that holds in a Hilbert lattice, when an element meets an atom. (Contributed by NM, 2-Sep-2012.) (Revised by Mario Carneiro, 10-May-2013.)
Hypotheses
Ref Expression
atmod.b 𝐵 = (Base‘𝐾)
atmod.l = (le‘𝐾)
atmod.j = (join‘𝐾)
atmod.m = (meet‘𝐾)
atmod.a 𝐴 = (Atoms‘𝐾)
Assertion
Ref Expression
atmod1i1m (((𝐾 ∈ HL ∧ 𝑃𝐴) ∧ (𝑋𝐵𝑌𝐵𝑍𝐵) ∧ (𝑋 𝑃) 𝑍) → ((𝑋 𝑃) (𝑌 𝑍)) = (((𝑋 𝑃) 𝑌) 𝑍))

Proof of Theorem atmod1i1m
StepHypRef Expression
1 simpl1l 1221 . . 3 ((((𝐾 ∈ HL ∧ 𝑃𝐴) ∧ (𝑋𝐵𝑌𝐵𝑍𝐵) ∧ (𝑋 𝑃) 𝑍) ∧ (𝑋 𝑃) ∈ 𝐴) → 𝐾 ∈ HL)
2 simpr 483 . . 3 ((((𝐾 ∈ HL ∧ 𝑃𝐴) ∧ (𝑋𝐵𝑌𝐵𝑍𝐵) ∧ (𝑋 𝑃) 𝑍) ∧ (𝑋 𝑃) ∈ 𝐴) → (𝑋 𝑃) ∈ 𝐴)
3 simpl22 1249 . . 3 ((((𝐾 ∈ HL ∧ 𝑃𝐴) ∧ (𝑋𝐵𝑌𝐵𝑍𝐵) ∧ (𝑋 𝑃) 𝑍) ∧ (𝑋 𝑃) ∈ 𝐴) → 𝑌𝐵)
4 simpl23 1250 . . 3 ((((𝐾 ∈ HL ∧ 𝑃𝐴) ∧ (𝑋𝐵𝑌𝐵𝑍𝐵) ∧ (𝑋 𝑃) 𝑍) ∧ (𝑋 𝑃) ∈ 𝐴) → 𝑍𝐵)
5 simpl3 1190 . . 3 ((((𝐾 ∈ HL ∧ 𝑃𝐴) ∧ (𝑋𝐵𝑌𝐵𝑍𝐵) ∧ (𝑋 𝑃) 𝑍) ∧ (𝑋 𝑃) ∈ 𝐴) → (𝑋 𝑃) 𝑍)
6 atmod.b . . . 4 𝐵 = (Base‘𝐾)
7 atmod.l . . . 4 = (le‘𝐾)
8 atmod.j . . . 4 = (join‘𝐾)
9 atmod.m . . . 4 = (meet‘𝐾)
10 atmod.a . . . 4 𝐴 = (Atoms‘𝐾)
116, 7, 8, 9, 10atmod1i1 39386 . . 3 ((𝐾 ∈ HL ∧ ((𝑋 𝑃) ∈ 𝐴𝑌𝐵𝑍𝐵) ∧ (𝑋 𝑃) 𝑍) → ((𝑋 𝑃) (𝑌 𝑍)) = (((𝑋 𝑃) 𝑌) 𝑍))
121, 2, 3, 4, 5, 11syl131anc 1380 . 2 ((((𝐾 ∈ HL ∧ 𝑃𝐴) ∧ (𝑋𝐵𝑌𝐵𝑍𝐵) ∧ (𝑋 𝑃) 𝑍) ∧ (𝑋 𝑃) ∈ 𝐴) → ((𝑋 𝑃) (𝑌 𝑍)) = (((𝑋 𝑃) 𝑌) 𝑍))
13 simp1l 1194 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑃𝐴) ∧ (𝑋𝐵𝑌𝐵𝑍𝐵) ∧ (𝑋 𝑃) 𝑍) → 𝐾 ∈ HL)
14 hlol 38889 . . . . . 6 (𝐾 ∈ HL → 𝐾 ∈ OL)
1513, 14syl 17 . . . . 5 (((𝐾 ∈ HL ∧ 𝑃𝐴) ∧ (𝑋𝐵𝑌𝐵𝑍𝐵) ∧ (𝑋 𝑃) 𝑍) → 𝐾 ∈ OL)
1615adantr 479 . . . 4 ((((𝐾 ∈ HL ∧ 𝑃𝐴) ∧ (𝑋𝐵𝑌𝐵𝑍𝐵) ∧ (𝑋 𝑃) 𝑍) ∧ (𝑋 𝑃) = (0.‘𝐾)) → 𝐾 ∈ OL)
1713hllatd 38892 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑃𝐴) ∧ (𝑋𝐵𝑌𝐵𝑍𝐵) ∧ (𝑋 𝑃) 𝑍) → 𝐾 ∈ Lat)
1817adantr 479 . . . . 5 ((((𝐾 ∈ HL ∧ 𝑃𝐴) ∧ (𝑋𝐵𝑌𝐵𝑍𝐵) ∧ (𝑋 𝑃) 𝑍) ∧ (𝑋 𝑃) = (0.‘𝐾)) → 𝐾 ∈ Lat)
19 simpl22 1249 . . . . 5 ((((𝐾 ∈ HL ∧ 𝑃𝐴) ∧ (𝑋𝐵𝑌𝐵𝑍𝐵) ∧ (𝑋 𝑃) 𝑍) ∧ (𝑋 𝑃) = (0.‘𝐾)) → 𝑌𝐵)
20 simpl23 1250 . . . . 5 ((((𝐾 ∈ HL ∧ 𝑃𝐴) ∧ (𝑋𝐵𝑌𝐵𝑍𝐵) ∧ (𝑋 𝑃) 𝑍) ∧ (𝑋 𝑃) = (0.‘𝐾)) → 𝑍𝐵)
216, 9latmcl 18431 . . . . 5 ((𝐾 ∈ Lat ∧ 𝑌𝐵𝑍𝐵) → (𝑌 𝑍) ∈ 𝐵)
2218, 19, 20, 21syl3anc 1368 . . . 4 ((((𝐾 ∈ HL ∧ 𝑃𝐴) ∧ (𝑋𝐵𝑌𝐵𝑍𝐵) ∧ (𝑋 𝑃) 𝑍) ∧ (𝑋 𝑃) = (0.‘𝐾)) → (𝑌 𝑍) ∈ 𝐵)
23 eqid 2725 . . . . 5 (0.‘𝐾) = (0.‘𝐾)
246, 8, 23olj02 38754 . . . 4 ((𝐾 ∈ OL ∧ (𝑌 𝑍) ∈ 𝐵) → ((0.‘𝐾) (𝑌 𝑍)) = (𝑌 𝑍))
2516, 22, 24syl2anc 582 . . 3 ((((𝐾 ∈ HL ∧ 𝑃𝐴) ∧ (𝑋𝐵𝑌𝐵𝑍𝐵) ∧ (𝑋 𝑃) 𝑍) ∧ (𝑋 𝑃) = (0.‘𝐾)) → ((0.‘𝐾) (𝑌 𝑍)) = (𝑌 𝑍))
26 oveq1 7423 . . . 4 ((𝑋 𝑃) = (0.‘𝐾) → ((𝑋 𝑃) (𝑌 𝑍)) = ((0.‘𝐾) (𝑌 𝑍)))
2726adantl 480 . . 3 ((((𝐾 ∈ HL ∧ 𝑃𝐴) ∧ (𝑋𝐵𝑌𝐵𝑍𝐵) ∧ (𝑋 𝑃) 𝑍) ∧ (𝑋 𝑃) = (0.‘𝐾)) → ((𝑋 𝑃) (𝑌 𝑍)) = ((0.‘𝐾) (𝑌 𝑍)))
28 oveq1 7423 . . . . . 6 ((𝑋 𝑃) = (0.‘𝐾) → ((𝑋 𝑃) 𝑌) = ((0.‘𝐾) 𝑌))
2928adantl 480 . . . . 5 ((((𝐾 ∈ HL ∧ 𝑃𝐴) ∧ (𝑋𝐵𝑌𝐵𝑍𝐵) ∧ (𝑋 𝑃) 𝑍) ∧ (𝑋 𝑃) = (0.‘𝐾)) → ((𝑋 𝑃) 𝑌) = ((0.‘𝐾) 𝑌))
306, 8, 23olj02 38754 . . . . . 6 ((𝐾 ∈ OL ∧ 𝑌𝐵) → ((0.‘𝐾) 𝑌) = 𝑌)
3116, 19, 30syl2anc 582 . . . . 5 ((((𝐾 ∈ HL ∧ 𝑃𝐴) ∧ (𝑋𝐵𝑌𝐵𝑍𝐵) ∧ (𝑋 𝑃) 𝑍) ∧ (𝑋 𝑃) = (0.‘𝐾)) → ((0.‘𝐾) 𝑌) = 𝑌)
3229, 31eqtrd 2765 . . . 4 ((((𝐾 ∈ HL ∧ 𝑃𝐴) ∧ (𝑋𝐵𝑌𝐵𝑍𝐵) ∧ (𝑋 𝑃) 𝑍) ∧ (𝑋 𝑃) = (0.‘𝐾)) → ((𝑋 𝑃) 𝑌) = 𝑌)
3332oveq1d 7431 . . 3 ((((𝐾 ∈ HL ∧ 𝑃𝐴) ∧ (𝑋𝐵𝑌𝐵𝑍𝐵) ∧ (𝑋 𝑃) 𝑍) ∧ (𝑋 𝑃) = (0.‘𝐾)) → (((𝑋 𝑃) 𝑌) 𝑍) = (𝑌 𝑍))
3425, 27, 333eqtr4d 2775 . 2 ((((𝐾 ∈ HL ∧ 𝑃𝐴) ∧ (𝑋𝐵𝑌𝐵𝑍𝐵) ∧ (𝑋 𝑃) 𝑍) ∧ (𝑋 𝑃) = (0.‘𝐾)) → ((𝑋 𝑃) (𝑌 𝑍)) = (((𝑋 𝑃) 𝑌) 𝑍))
35 simp21 1203 . . 3 (((𝐾 ∈ HL ∧ 𝑃𝐴) ∧ (𝑋𝐵𝑌𝐵𝑍𝐵) ∧ (𝑋 𝑃) 𝑍) → 𝑋𝐵)
36 simp1r 1195 . . 3 (((𝐾 ∈ HL ∧ 𝑃𝐴) ∧ (𝑋𝐵𝑌𝐵𝑍𝐵) ∧ (𝑋 𝑃) 𝑍) → 𝑃𝐴)
376, 9, 23, 10meetat2 38825 . . 3 ((𝐾 ∈ OL ∧ 𝑋𝐵𝑃𝐴) → ((𝑋 𝑃) ∈ 𝐴 ∨ (𝑋 𝑃) = (0.‘𝐾)))
3815, 35, 36, 37syl3anc 1368 . 2 (((𝐾 ∈ HL ∧ 𝑃𝐴) ∧ (𝑋𝐵𝑌𝐵𝑍𝐵) ∧ (𝑋 𝑃) 𝑍) → ((𝑋 𝑃) ∈ 𝐴 ∨ (𝑋 𝑃) = (0.‘𝐾)))
3912, 34, 38mpjaodan 956 1 (((𝐾 ∈ HL ∧ 𝑃𝐴) ∧ (𝑋𝐵𝑌𝐵𝑍𝐵) ∧ (𝑋 𝑃) 𝑍) → ((𝑋 𝑃) (𝑌 𝑍)) = (((𝑋 𝑃) 𝑌) 𝑍))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 394  wo 845  w3a 1084   = wceq 1533  wcel 2098   class class class wbr 5143  cfv 6543  (class class class)co 7416  Basecbs 17179  lecple 17239  joincjn 18302  meetcmee 18303  0.cp0 18414  Latclat 18422  OLcol 38702  Atomscatm 38791  HLchlt 38878
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2166  ax-ext 2696  ax-rep 5280  ax-sep 5294  ax-nul 5301  ax-pow 5359  ax-pr 5423  ax-un 7738
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 846  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2528  df-eu 2557  df-clab 2703  df-cleq 2717  df-clel 2802  df-nfc 2877  df-ne 2931  df-ral 3052  df-rex 3061  df-rmo 3364  df-reu 3365  df-rab 3420  df-v 3465  df-sbc 3769  df-csb 3885  df-dif 3942  df-un 3944  df-in 3946  df-ss 3956  df-nul 4319  df-if 4525  df-pw 4600  df-sn 4625  df-pr 4627  df-op 4631  df-uni 4904  df-iun 4993  df-iin 4994  df-br 5144  df-opab 5206  df-mpt 5227  df-id 5570  df-xp 5678  df-rel 5679  df-cnv 5680  df-co 5681  df-dm 5682  df-rn 5683  df-res 5684  df-ima 5685  df-iota 6495  df-fun 6545  df-fn 6546  df-f 6547  df-f1 6548  df-fo 6549  df-f1o 6550  df-fv 6551  df-riota 7372  df-ov 7419  df-oprab 7420  df-mpo 7421  df-1st 7991  df-2nd 7992  df-proset 18286  df-poset 18304  df-plt 18321  df-lub 18337  df-glb 18338  df-join 18339  df-meet 18340  df-p0 18416  df-lat 18423  df-clat 18490  df-oposet 38704  df-ol 38706  df-oml 38707  df-covers 38794  df-ats 38795  df-atl 38826  df-cvlat 38850  df-hlat 38879  df-psubsp 39032  df-pmap 39033  df-padd 39325
This theorem is referenced by:  dalawlem3  39402  dalawlem6  39405
  Copyright terms: Public domain W3C validator
OSZAR »