MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  bday1s Structured version   Visualization version   GIF version

Theorem bday1s 27758
Description: The birthday of surreal one is ordinal one. (Contributed by Scott Fenton, 8-Aug-2024.)
Assertion
Ref Expression
bday1s ( bday ‘ 1s ) = 1o

Proof of Theorem bday1s
Dummy variables 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-1s 27752 . . 3 1s = ({ 0s } |s ∅)
21fveq2i 6895 . 2 ( bday ‘ 1s ) = ( bday ‘({ 0s } |s ∅))
3 0sno 27753 . . . . . . 7 0s No
4 snelpwi 5440 . . . . . . 7 ( 0s No → { 0s } ∈ 𝒫 No )
53, 4ax-mp 5 . . . . . 6 { 0s } ∈ 𝒫 No
6 nulssgt 27725 . . . . . 6 ({ 0s } ∈ 𝒫 No → { 0s } <<s ∅)
75, 6ax-mp 5 . . . . 5 { 0s } <<s ∅
8 scutbdaybnd2 27743 . . . . 5 ({ 0s } <<s ∅ → ( bday ‘({ 0s } |s ∅)) ⊆ suc ( bday “ ({ 0s } ∪ ∅)))
97, 8ax-mp 5 . . . 4 ( bday ‘({ 0s } |s ∅)) ⊆ suc ( bday “ ({ 0s } ∪ ∅))
10 un0 4387 . . . . . . . . . 10 ({ 0s } ∪ ∅) = { 0s }
1110imaeq2i 6056 . . . . . . . . 9 ( bday “ ({ 0s } ∪ ∅)) = ( bday “ { 0s })
12 bdayfn 27700 . . . . . . . . . 10 bday Fn No
13 fnsnfv 6972 . . . . . . . . . 10 (( bday Fn No ∧ 0s No ) → {( bday ‘ 0s )} = ( bday “ { 0s }))
1412, 3, 13mp2an 691 . . . . . . . . 9 {( bday ‘ 0s )} = ( bday “ { 0s })
15 bday0s 27755 . . . . . . . . . 10 ( bday ‘ 0s ) = ∅
1615sneqi 4636 . . . . . . . . 9 {( bday ‘ 0s )} = {∅}
1711, 14, 163eqtr2i 2762 . . . . . . . 8 ( bday “ ({ 0s } ∪ ∅)) = {∅}
1817unieqi 4916 . . . . . . 7 ( bday “ ({ 0s } ∪ ∅)) = {∅}
19 0ex 5302 . . . . . . . 8 ∅ ∈ V
2019unisn 4925 . . . . . . 7 {∅} = ∅
2118, 20eqtri 2756 . . . . . 6 ( bday “ ({ 0s } ∪ ∅)) = ∅
22 suceq 6430 . . . . . 6 ( ( bday “ ({ 0s } ∪ ∅)) = ∅ → suc ( bday “ ({ 0s } ∪ ∅)) = suc ∅)
2321, 22ax-mp 5 . . . . 5 suc ( bday “ ({ 0s } ∪ ∅)) = suc ∅
24 df-1o 8481 . . . . 5 1o = suc ∅
2523, 24eqtr4i 2759 . . . 4 suc ( bday “ ({ 0s } ∪ ∅)) = 1o
269, 25sseqtri 4015 . . 3 ( bday ‘({ 0s } |s ∅)) ⊆ 1o
27 ssrab2 4074 . . . . . 6 {𝑥 No ∣ ({ 0s } <<s {𝑥} ∧ {𝑥} <<s ∅)} ⊆ No
28 fnssintima 7365 . . . . . 6 (( bday Fn No ∧ {𝑥 No ∣ ({ 0s } <<s {𝑥} ∧ {𝑥} <<s ∅)} ⊆ No ) → (1o ( bday “ {𝑥 No ∣ ({ 0s } <<s {𝑥} ∧ {𝑥} <<s ∅)}) ↔ ∀𝑦 ∈ {𝑥 No ∣ ({ 0s } <<s {𝑥} ∧ {𝑥} <<s ∅)}1o ⊆ ( bday 𝑦)))
2912, 27, 28mp2an 691 . . . . 5 (1o ( bday “ {𝑥 No ∣ ({ 0s } <<s {𝑥} ∧ {𝑥} <<s ∅)}) ↔ ∀𝑦 ∈ {𝑥 No ∣ ({ 0s } <<s {𝑥} ∧ {𝑥} <<s ∅)}1o ⊆ ( bday 𝑦))
30 sneq 4635 . . . . . . . . 9 (𝑥 = 𝑦 → {𝑥} = {𝑦})
3130breq2d 5155 . . . . . . . 8 (𝑥 = 𝑦 → ({ 0s } <<s {𝑥} ↔ { 0s } <<s {𝑦}))
3230breq1d 5153 . . . . . . . 8 (𝑥 = 𝑦 → ({𝑥} <<s ∅ ↔ {𝑦} <<s ∅))
3331, 32anbi12d 631 . . . . . . 7 (𝑥 = 𝑦 → (({ 0s } <<s {𝑥} ∧ {𝑥} <<s ∅) ↔ ({ 0s } <<s {𝑦} ∧ {𝑦} <<s ∅)))
3433elrab 3681 . . . . . 6 (𝑦 ∈ {𝑥 No ∣ ({ 0s } <<s {𝑥} ∧ {𝑥} <<s ∅)} ↔ (𝑦 No ∧ ({ 0s } <<s {𝑦} ∧ {𝑦} <<s ∅)))
35 sltirr 27673 . . . . . . . . . . . . 13 ( 0s No → ¬ 0s <s 0s )
363, 35ax-mp 5 . . . . . . . . . . . 12 ¬ 0s <s 0s
37 breq2 5147 . . . . . . . . . . . 12 (𝑦 = 0s → ( 0s <s 𝑦 ↔ 0s <s 0s ))
3836, 37mtbiri 327 . . . . . . . . . . 11 (𝑦 = 0s → ¬ 0s <s 𝑦)
3938necon2ai 2966 . . . . . . . . . 10 ( 0s <s 𝑦𝑦 ≠ 0s )
40 bday0b 27757 . . . . . . . . . . 11 (𝑦 No → (( bday 𝑦) = ∅ ↔ 𝑦 = 0s ))
4140necon3bid 2981 . . . . . . . . . 10 (𝑦 No → (( bday 𝑦) ≠ ∅ ↔ 𝑦 ≠ 0s ))
4239, 41imbitrrid 245 . . . . . . . . 9 (𝑦 No → ( 0s <s 𝑦 → ( bday 𝑦) ≠ ∅))
43 bdayelon 27703 . . . . . . . . . . 11 ( bday 𝑦) ∈ On
4443onordi 6475 . . . . . . . . . 10 Ord ( bday 𝑦)
45 ordge1n0 8509 . . . . . . . . . 10 (Ord ( bday 𝑦) → (1o ⊆ ( bday 𝑦) ↔ ( bday 𝑦) ≠ ∅))
4644, 45ax-mp 5 . . . . . . . . 9 (1o ⊆ ( bday 𝑦) ↔ ( bday 𝑦) ≠ ∅)
4742, 46imbitrrdi 251 . . . . . . . 8 (𝑦 No → ( 0s <s 𝑦 → 1o ⊆ ( bday 𝑦)))
48 ssltsep 27717 . . . . . . . . 9 ({ 0s } <<s {𝑦} → ∀𝑥 ∈ { 0s }∀𝑧 ∈ {𝑦}𝑥 <s 𝑧)
49 vex 3474 . . . . . . . . . . . 12 𝑦 ∈ V
50 breq2 5147 . . . . . . . . . . . 12 (𝑧 = 𝑦 → (𝑥 <s 𝑧𝑥 <s 𝑦))
5149, 50ralsn 4682 . . . . . . . . . . 11 (∀𝑧 ∈ {𝑦}𝑥 <s 𝑧𝑥 <s 𝑦)
5251ralbii 3089 . . . . . . . . . 10 (∀𝑥 ∈ { 0s }∀𝑧 ∈ {𝑦}𝑥 <s 𝑧 ↔ ∀𝑥 ∈ { 0s }𝑥 <s 𝑦)
533elexi 3490 . . . . . . . . . . 11 0s ∈ V
54 breq1 5146 . . . . . . . . . . 11 (𝑥 = 0s → (𝑥 <s 𝑦 ↔ 0s <s 𝑦))
5553, 54ralsn 4682 . . . . . . . . . 10 (∀𝑥 ∈ { 0s }𝑥 <s 𝑦 ↔ 0s <s 𝑦)
5652, 55bitri 275 . . . . . . . . 9 (∀𝑥 ∈ { 0s }∀𝑧 ∈ {𝑦}𝑥 <s 𝑧 ↔ 0s <s 𝑦)
5748, 56sylib 217 . . . . . . . 8 ({ 0s } <<s {𝑦} → 0s <s 𝑦)
5847, 57impel 505 . . . . . . 7 ((𝑦 No ∧ { 0s } <<s {𝑦}) → 1o ⊆ ( bday 𝑦))
5958adantrr 716 . . . . . 6 ((𝑦 No ∧ ({ 0s } <<s {𝑦} ∧ {𝑦} <<s ∅)) → 1o ⊆ ( bday 𝑦))
6034, 59sylbi 216 . . . . 5 (𝑦 ∈ {𝑥 No ∣ ({ 0s } <<s {𝑥} ∧ {𝑥} <<s ∅)} → 1o ⊆ ( bday 𝑦))
6129, 60mprgbir 3064 . . . 4 1o ( bday “ {𝑥 No ∣ ({ 0s } <<s {𝑥} ∧ {𝑥} <<s ∅)})
62 scutbday 27731 . . . . 5 ({ 0s } <<s ∅ → ( bday ‘({ 0s } |s ∅)) = ( bday “ {𝑥 No ∣ ({ 0s } <<s {𝑥} ∧ {𝑥} <<s ∅)}))
637, 62ax-mp 5 . . . 4 ( bday ‘({ 0s } |s ∅)) = ( bday “ {𝑥 No ∣ ({ 0s } <<s {𝑥} ∧ {𝑥} <<s ∅)})
6461, 63sseqtrri 4016 . . 3 1o ⊆ ( bday ‘({ 0s } |s ∅))
6526, 64eqssi 3995 . 2 ( bday ‘({ 0s } |s ∅)) = 1o
662, 65eqtri 2756 1 ( bday ‘ 1s ) = 1o
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wb 205  wa 395   = wceq 1534  wcel 2099  wne 2936  wral 3057  {crab 3428  cun 3943  wss 3945  c0 4319  𝒫 cpw 4599  {csn 4625   cuni 4904   cint 4945   class class class wbr 5143  cima 5676  Ord word 6363  suc csuc 6366   Fn wfn 6538  cfv 6543  (class class class)co 7415  1oc1o 8474   No csur 27567   <s cslt 27568   bday cbday 27569   <<s csslt 27707   |s cscut 27709   0s c0s 27749   1s c1s 27750
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1790  ax-4 1804  ax-5 1906  ax-6 1964  ax-7 2004  ax-8 2101  ax-9 2109  ax-10 2130  ax-11 2147  ax-12 2167  ax-ext 2699  ax-rep 5280  ax-sep 5294  ax-nul 5301  ax-pr 5424  ax-un 7735
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 847  df-3or 1086  df-3an 1087  df-tru 1537  df-fal 1547  df-ex 1775  df-nf 1779  df-sb 2061  df-mo 2530  df-eu 2559  df-clab 2706  df-cleq 2720  df-clel 2806  df-nfc 2881  df-ne 2937  df-ral 3058  df-rex 3067  df-rmo 3372  df-reu 3373  df-rab 3429  df-v 3472  df-sbc 3776  df-csb 3891  df-dif 3948  df-un 3950  df-in 3952  df-ss 3962  df-pss 3964  df-nul 4320  df-if 4526  df-pw 4601  df-sn 4626  df-pr 4628  df-tp 4630  df-op 4632  df-uni 4905  df-int 4946  df-iun 4994  df-br 5144  df-opab 5206  df-mpt 5227  df-tr 5261  df-id 5571  df-eprel 5577  df-po 5585  df-so 5586  df-fr 5628  df-we 5630  df-xp 5679  df-rel 5680  df-cnv 5681  df-co 5682  df-dm 5683  df-rn 5684  df-res 5685  df-ima 5686  df-ord 6367  df-on 6368  df-suc 6370  df-iota 6495  df-fun 6545  df-fn 6546  df-f 6547  df-f1 6548  df-fo 6549  df-f1o 6550  df-fv 6551  df-riota 7371  df-ov 7418  df-oprab 7419  df-mpo 7420  df-1o 8481  df-2o 8482  df-no 27570  df-slt 27571  df-bday 27572  df-sslt 27708  df-scut 27710  df-0s 27751  df-1s 27752
This theorem is referenced by:  cuteq1  27760  left1s  27815  right1s  27816
  Copyright terms: Public domain W3C validator
OSZAR »