Users' Mathboxes Mathbox for Jonathan Ben-Naim < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  bnj1177 Structured version   Visualization version   GIF version

Theorem bnj1177 34642
Description: Technical lemma for bnj69 34646. This lemma may no longer be used or have become an indirect lemma of the theorem in question (i.e. a lemma of a lemma... of the theorem). (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (New usage is discouraged.)
Hypotheses
Ref Expression
bnj1177.2 (𝜓 ↔ (𝑋𝐵𝑦𝐵𝑦𝑅𝑋))
bnj1177.3 𝐶 = ( trCl(𝑋, 𝐴, 𝑅) ∩ 𝐵)
bnj1177.9 ((𝜑𝜓) → 𝑅 FrSe 𝐴)
bnj1177.13 ((𝜑𝜓) → 𝐵𝐴)
bnj1177.17 ((𝜑𝜓) → 𝑋𝐴)
Assertion
Ref Expression
bnj1177 ((𝜑𝜓) → (𝑅 Fr 𝐴𝐶𝐴𝐶 ≠ ∅ ∧ 𝐶 ∈ V))

Proof of Theorem bnj1177
StepHypRef Expression
1 bnj1177.9 . . 3 ((𝜑𝜓) → 𝑅 FrSe 𝐴)
2 df-bnj15 34329 . . . 4 (𝑅 FrSe 𝐴 ↔ (𝑅 Fr 𝐴𝑅 Se 𝐴))
32simplbi 496 . . 3 (𝑅 FrSe 𝐴𝑅 Fr 𝐴)
41, 3syl 17 . 2 ((𝜑𝜓) → 𝑅 Fr 𝐴)
5 bnj1177.3 . . . 4 𝐶 = ( trCl(𝑋, 𝐴, 𝑅) ∩ 𝐵)
6 bnj1147 34630 . . . . 5 trCl(𝑋, 𝐴, 𝑅) ⊆ 𝐴
7 ssinss1 4238 . . . . 5 ( trCl(𝑋, 𝐴, 𝑅) ⊆ 𝐴 → ( trCl(𝑋, 𝐴, 𝑅) ∩ 𝐵) ⊆ 𝐴)
86, 7ax-mp 5 . . . 4 ( trCl(𝑋, 𝐴, 𝑅) ∩ 𝐵) ⊆ 𝐴
95, 8eqsstri 4014 . . 3 𝐶𝐴
109a1i 11 . 2 ((𝜑𝜓) → 𝐶𝐴)
11 bnj1177.17 . . . . . . 7 ((𝜑𝜓) → 𝑋𝐴)
12 bnj906 34566 . . . . . . 7 ((𝑅 FrSe 𝐴𝑋𝐴) → pred(𝑋, 𝐴, 𝑅) ⊆ trCl(𝑋, 𝐴, 𝑅))
131, 11, 12syl2anc 582 . . . . . 6 ((𝜑𝜓) → pred(𝑋, 𝐴, 𝑅) ⊆ trCl(𝑋, 𝐴, 𝑅))
1413ssrind 4236 . . . . 5 ((𝜑𝜓) → ( pred(𝑋, 𝐴, 𝑅) ∩ 𝐵) ⊆ ( trCl(𝑋, 𝐴, 𝑅) ∩ 𝐵))
15 bnj1177.13 . . . . . . . 8 ((𝜑𝜓) → 𝐵𝐴)
16 bnj1177.2 . . . . . . . . . 10 (𝜓 ↔ (𝑋𝐵𝑦𝐵𝑦𝑅𝑋))
1716simp2bi 1143 . . . . . . . . 9 (𝜓𝑦𝐵)
1817adantl 480 . . . . . . . 8 ((𝜑𝜓) → 𝑦𝐵)
1915, 18sseldd 3981 . . . . . . 7 ((𝜑𝜓) → 𝑦𝐴)
2016simp3bi 1144 . . . . . . . 8 (𝜓𝑦𝑅𝑋)
2120adantl 480 . . . . . . 7 ((𝜑𝜓) → 𝑦𝑅𝑋)
22 bnj1152 34634 . . . . . . 7 (𝑦 ∈ pred(𝑋, 𝐴, 𝑅) ↔ (𝑦𝐴𝑦𝑅𝑋))
2319, 21, 22sylanbrc 581 . . . . . 6 ((𝜑𝜓) → 𝑦 ∈ pred(𝑋, 𝐴, 𝑅))
2423, 18elind 4194 . . . . 5 ((𝜑𝜓) → 𝑦 ∈ ( pred(𝑋, 𝐴, 𝑅) ∩ 𝐵))
2514, 24sseldd 3981 . . . 4 ((𝜑𝜓) → 𝑦 ∈ ( trCl(𝑋, 𝐴, 𝑅) ∩ 𝐵))
2625ne0d 4337 . . 3 ((𝜑𝜓) → ( trCl(𝑋, 𝐴, 𝑅) ∩ 𝐵) ≠ ∅)
275neeq1i 3001 . . 3 (𝐶 ≠ ∅ ↔ ( trCl(𝑋, 𝐴, 𝑅) ∩ 𝐵) ≠ ∅)
2826, 27sylibr 233 . 2 ((𝜑𝜓) → 𝐶 ≠ ∅)
29 bnj893 34564 . . . 4 ((𝑅 FrSe 𝐴𝑋𝐴) → trCl(𝑋, 𝐴, 𝑅) ∈ V)
301, 11, 29syl2anc 582 . . 3 ((𝜑𝜓) → trCl(𝑋, 𝐴, 𝑅) ∈ V)
31 inex1g 5321 . . . 4 ( trCl(𝑋, 𝐴, 𝑅) ∈ V → ( trCl(𝑋, 𝐴, 𝑅) ∩ 𝐵) ∈ V)
325, 31eqeltrid 2832 . . 3 ( trCl(𝑋, 𝐴, 𝑅) ∈ V → 𝐶 ∈ V)
3330, 32syl 17 . 2 ((𝜑𝜓) → 𝐶 ∈ V)
344, 10, 28, 33bnj951 34411 1 ((𝜑𝜓) → (𝑅 Fr 𝐴𝐶𝐴𝐶 ≠ ∅ ∧ 𝐶 ∈ V))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 394  w3a 1084   = wceq 1533  wcel 2098  wne 2936  Vcvv 3471  cin 3946  wss 3947  c0 4324   class class class wbr 5150   Fr wfr 5632  w-bnj17 34322   predc-bnj14 34324   Se w-bnj13 34326   FrSe w-bnj15 34328   trClc-bnj18 34330
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2166  ax-ext 2698  ax-rep 5287  ax-sep 5301  ax-nul 5308  ax-pow 5367  ax-pr 5431  ax-un 7744  ax-reg 9621  ax-inf2 9670
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 846  df-3or 1085  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2529  df-eu 2558  df-clab 2705  df-cleq 2719  df-clel 2805  df-nfc 2880  df-ne 2937  df-ral 3058  df-rex 3067  df-reu 3373  df-rab 3429  df-v 3473  df-sbc 3777  df-csb 3893  df-dif 3950  df-un 3952  df-in 3954  df-ss 3964  df-pss 3966  df-nul 4325  df-if 4531  df-pw 4606  df-sn 4631  df-pr 4633  df-op 4637  df-uni 4911  df-iun 5000  df-br 5151  df-opab 5213  df-mpt 5234  df-tr 5268  df-id 5578  df-eprel 5584  df-po 5592  df-so 5593  df-fr 5635  df-we 5637  df-xp 5686  df-rel 5687  df-cnv 5688  df-co 5689  df-dm 5690  df-rn 5691  df-res 5692  df-ima 5693  df-ord 6375  df-on 6376  df-lim 6377  df-suc 6378  df-iota 6503  df-fun 6553  df-fn 6554  df-f 6555  df-f1 6556  df-fo 6557  df-f1o 6558  df-fv 6559  df-om 7875  df-1o 8491  df-bnj17 34323  df-bnj14 34325  df-bnj13 34327  df-bnj15 34329  df-bnj18 34331
This theorem is referenced by:  bnj1190  34644
  Copyright terms: Public domain W3C validator
OSZAR »