![]() |
Mathbox for Scott Fenton |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > brcart | Structured version Visualization version GIF version |
Description: Binary relation form of the cartesian product operator. (Contributed by Scott Fenton, 11-Apr-2014.) (Revised by Mario Carneiro, 19-Apr-2014.) |
Ref | Expression |
---|---|
brcart.1 | ⊢ 𝐴 ∈ V |
brcart.2 | ⊢ 𝐵 ∈ V |
brcart.3 | ⊢ 𝐶 ∈ V |
Ref | Expression |
---|---|
brcart | ⊢ (〈𝐴, 𝐵〉Cart𝐶 ↔ 𝐶 = (𝐴 × 𝐵)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | opex 5461 | . 2 ⊢ 〈𝐴, 𝐵〉 ∈ V | |
2 | brcart.3 | . 2 ⊢ 𝐶 ∈ V | |
3 | df-cart 35456 | . 2 ⊢ Cart = (((V × V) × V) ∖ ran ((V ⊗ E ) △ (pprod( E , E ) ⊗ V))) | |
4 | brcart.1 | . . . 4 ⊢ 𝐴 ∈ V | |
5 | brcart.2 | . . . 4 ⊢ 𝐵 ∈ V | |
6 | 4, 5 | opelvv 5713 | . . 3 ⊢ 〈𝐴, 𝐵〉 ∈ (V × V) |
7 | brxp 5722 | . . 3 ⊢ (〈𝐴, 𝐵〉((V × V) × V)𝐶 ↔ (〈𝐴, 𝐵〉 ∈ (V × V) ∧ 𝐶 ∈ V)) | |
8 | 6, 2, 7 | mpbir2an 710 | . 2 ⊢ 〈𝐴, 𝐵〉((V × V) × V)𝐶 |
9 | 3anass 1093 | . . . . 5 ⊢ ((𝑥 = 〈𝑦, 𝑧〉 ∧ 𝑦 E 𝐴 ∧ 𝑧 E 𝐵) ↔ (𝑥 = 〈𝑦, 𝑧〉 ∧ (𝑦 E 𝐴 ∧ 𝑧 E 𝐵))) | |
10 | 4 | epeli 5579 | . . . . . . 7 ⊢ (𝑦 E 𝐴 ↔ 𝑦 ∈ 𝐴) |
11 | 5 | epeli 5579 | . . . . . . 7 ⊢ (𝑧 E 𝐵 ↔ 𝑧 ∈ 𝐵) |
12 | 10, 11 | anbi12i 627 | . . . . . 6 ⊢ ((𝑦 E 𝐴 ∧ 𝑧 E 𝐵) ↔ (𝑦 ∈ 𝐴 ∧ 𝑧 ∈ 𝐵)) |
13 | 12 | anbi2i 622 | . . . . 5 ⊢ ((𝑥 = 〈𝑦, 𝑧〉 ∧ (𝑦 E 𝐴 ∧ 𝑧 E 𝐵)) ↔ (𝑥 = 〈𝑦, 𝑧〉 ∧ (𝑦 ∈ 𝐴 ∧ 𝑧 ∈ 𝐵))) |
14 | 9, 13 | bitri 275 | . . . 4 ⊢ ((𝑥 = 〈𝑦, 𝑧〉 ∧ 𝑦 E 𝐴 ∧ 𝑧 E 𝐵) ↔ (𝑥 = 〈𝑦, 𝑧〉 ∧ (𝑦 ∈ 𝐴 ∧ 𝑧 ∈ 𝐵))) |
15 | 14 | 2exbii 1844 | . . 3 ⊢ (∃𝑦∃𝑧(𝑥 = 〈𝑦, 𝑧〉 ∧ 𝑦 E 𝐴 ∧ 𝑧 E 𝐵) ↔ ∃𝑦∃𝑧(𝑥 = 〈𝑦, 𝑧〉 ∧ (𝑦 ∈ 𝐴 ∧ 𝑧 ∈ 𝐵))) |
16 | vex 3474 | . . . 4 ⊢ 𝑥 ∈ V | |
17 | 16, 4, 5 | brpprod3b 35478 | . . 3 ⊢ (𝑥pprod( E , E )〈𝐴, 𝐵〉 ↔ ∃𝑦∃𝑧(𝑥 = 〈𝑦, 𝑧〉 ∧ 𝑦 E 𝐴 ∧ 𝑧 E 𝐵)) |
18 | elxp 5696 | . . 3 ⊢ (𝑥 ∈ (𝐴 × 𝐵) ↔ ∃𝑦∃𝑧(𝑥 = 〈𝑦, 𝑧〉 ∧ (𝑦 ∈ 𝐴 ∧ 𝑧 ∈ 𝐵))) | |
19 | 15, 17, 18 | 3bitr4ri 304 | . 2 ⊢ (𝑥 ∈ (𝐴 × 𝐵) ↔ 𝑥pprod( E , E )〈𝐴, 𝐵〉) |
20 | 1, 2, 3, 8, 19 | brtxpsd3 35487 | 1 ⊢ (〈𝐴, 𝐵〉Cart𝐶 ↔ 𝐶 = (𝐴 × 𝐵)) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 205 ∧ wa 395 ∧ w3a 1085 = wceq 1534 ∃wex 1774 ∈ wcel 2099 Vcvv 3470 〈cop 4631 class class class wbr 5143 E cep 5576 × cxp 5671 pprodcpprod 35422 Cartccart 35432 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1790 ax-4 1804 ax-5 1906 ax-6 1964 ax-7 2004 ax-8 2101 ax-9 2109 ax-10 2130 ax-11 2147 ax-12 2167 ax-ext 2699 ax-sep 5294 ax-nul 5301 ax-pr 5424 ax-un 7735 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 847 df-3an 1087 df-tru 1537 df-fal 1547 df-ex 1775 df-nf 1779 df-sb 2061 df-mo 2530 df-eu 2559 df-clab 2706 df-cleq 2720 df-clel 2806 df-nfc 2881 df-ne 2937 df-ral 3058 df-rex 3067 df-rab 3429 df-v 3472 df-dif 3948 df-un 3950 df-in 3952 df-ss 3962 df-symdif 4239 df-nul 4320 df-if 4526 df-sn 4626 df-pr 4628 df-op 4632 df-uni 4905 df-br 5144 df-opab 5206 df-mpt 5227 df-id 5571 df-eprel 5577 df-xp 5679 df-rel 5680 df-cnv 5681 df-co 5682 df-dm 5683 df-rn 5684 df-res 5685 df-iota 6495 df-fun 6545 df-fn 6546 df-f 6547 df-fo 6549 df-fv 6551 df-1st 7988 df-2nd 7989 df-txp 35445 df-pprod 35446 df-cart 35456 |
This theorem is referenced by: brimg 35528 brrestrict 35540 |
Copyright terms: Public domain | W3C validator |