Users' Mathboxes Mathbox for Scott Fenton < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  brcart Structured version   Visualization version   GIF version

Theorem brcart 35523
Description: Binary relation form of the cartesian product operator. (Contributed by Scott Fenton, 11-Apr-2014.) (Revised by Mario Carneiro, 19-Apr-2014.)
Hypotheses
Ref Expression
brcart.1 𝐴 ∈ V
brcart.2 𝐵 ∈ V
brcart.3 𝐶 ∈ V
Assertion
Ref Expression
brcart (⟨𝐴, 𝐵⟩Cart𝐶𝐶 = (𝐴 × 𝐵))

Proof of Theorem brcart
Dummy variables 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 opex 5461 . 2 𝐴, 𝐵⟩ ∈ V
2 brcart.3 . 2 𝐶 ∈ V
3 df-cart 35456 . 2 Cart = (((V × V) × V) ∖ ran ((V ⊗ E ) △ (pprod( E , E ) ⊗ V)))
4 brcart.1 . . . 4 𝐴 ∈ V
5 brcart.2 . . . 4 𝐵 ∈ V
64, 5opelvv 5713 . . 3 𝐴, 𝐵⟩ ∈ (V × V)
7 brxp 5722 . . 3 (⟨𝐴, 𝐵⟩((V × V) × V)𝐶 ↔ (⟨𝐴, 𝐵⟩ ∈ (V × V) ∧ 𝐶 ∈ V))
86, 2, 7mpbir2an 710 . 2 𝐴, 𝐵⟩((V × V) × V)𝐶
9 3anass 1093 . . . . 5 ((𝑥 = ⟨𝑦, 𝑧⟩ ∧ 𝑦 E 𝐴𝑧 E 𝐵) ↔ (𝑥 = ⟨𝑦, 𝑧⟩ ∧ (𝑦 E 𝐴𝑧 E 𝐵)))
104epeli 5579 . . . . . . 7 (𝑦 E 𝐴𝑦𝐴)
115epeli 5579 . . . . . . 7 (𝑧 E 𝐵𝑧𝐵)
1210, 11anbi12i 627 . . . . . 6 ((𝑦 E 𝐴𝑧 E 𝐵) ↔ (𝑦𝐴𝑧𝐵))
1312anbi2i 622 . . . . 5 ((𝑥 = ⟨𝑦, 𝑧⟩ ∧ (𝑦 E 𝐴𝑧 E 𝐵)) ↔ (𝑥 = ⟨𝑦, 𝑧⟩ ∧ (𝑦𝐴𝑧𝐵)))
149, 13bitri 275 . . . 4 ((𝑥 = ⟨𝑦, 𝑧⟩ ∧ 𝑦 E 𝐴𝑧 E 𝐵) ↔ (𝑥 = ⟨𝑦, 𝑧⟩ ∧ (𝑦𝐴𝑧𝐵)))
15142exbii 1844 . . 3 (∃𝑦𝑧(𝑥 = ⟨𝑦, 𝑧⟩ ∧ 𝑦 E 𝐴𝑧 E 𝐵) ↔ ∃𝑦𝑧(𝑥 = ⟨𝑦, 𝑧⟩ ∧ (𝑦𝐴𝑧𝐵)))
16 vex 3474 . . . 4 𝑥 ∈ V
1716, 4, 5brpprod3b 35478 . . 3 (𝑥pprod( E , E )⟨𝐴, 𝐵⟩ ↔ ∃𝑦𝑧(𝑥 = ⟨𝑦, 𝑧⟩ ∧ 𝑦 E 𝐴𝑧 E 𝐵))
18 elxp 5696 . . 3 (𝑥 ∈ (𝐴 × 𝐵) ↔ ∃𝑦𝑧(𝑥 = ⟨𝑦, 𝑧⟩ ∧ (𝑦𝐴𝑧𝐵)))
1915, 17, 183bitr4ri 304 . 2 (𝑥 ∈ (𝐴 × 𝐵) ↔ 𝑥pprod( E , E )⟨𝐴, 𝐵⟩)
201, 2, 3, 8, 19brtxpsd3 35487 1 (⟨𝐴, 𝐵⟩Cart𝐶𝐶 = (𝐴 × 𝐵))
Colors of variables: wff setvar class
Syntax hints:  wb 205  wa 395  w3a 1085   = wceq 1534  wex 1774  wcel 2099  Vcvv 3470  cop 4631   class class class wbr 5143   E cep 5576   × cxp 5671  pprodcpprod 35422  Cartccart 35432
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1790  ax-4 1804  ax-5 1906  ax-6 1964  ax-7 2004  ax-8 2101  ax-9 2109  ax-10 2130  ax-11 2147  ax-12 2167  ax-ext 2699  ax-sep 5294  ax-nul 5301  ax-pr 5424  ax-un 7735
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 847  df-3an 1087  df-tru 1537  df-fal 1547  df-ex 1775  df-nf 1779  df-sb 2061  df-mo 2530  df-eu 2559  df-clab 2706  df-cleq 2720  df-clel 2806  df-nfc 2881  df-ne 2937  df-ral 3058  df-rex 3067  df-rab 3429  df-v 3472  df-dif 3948  df-un 3950  df-in 3952  df-ss 3962  df-symdif 4239  df-nul 4320  df-if 4526  df-sn 4626  df-pr 4628  df-op 4632  df-uni 4905  df-br 5144  df-opab 5206  df-mpt 5227  df-id 5571  df-eprel 5577  df-xp 5679  df-rel 5680  df-cnv 5681  df-co 5682  df-dm 5683  df-rn 5684  df-res 5685  df-iota 6495  df-fun 6545  df-fn 6546  df-f 6547  df-fo 6549  df-fv 6551  df-1st 7988  df-2nd 7989  df-txp 35445  df-pprod 35446  df-cart 35456
This theorem is referenced by:  brimg  35528  brrestrict  35540
  Copyright terms: Public domain W3C validator
OSZAR »