![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > brralrspcev | Structured version Visualization version GIF version |
Description: Restricted existential specialization with a restricted universal quantifier over a relation, closed form. (Contributed by AV, 20-Aug-2022.) |
Ref | Expression |
---|---|
brralrspcev | ⊢ ((𝐵 ∈ 𝑋 ∧ ∀𝑦 ∈ 𝑌 𝐴𝑅𝐵) → ∃𝑥 ∈ 𝑋 ∀𝑦 ∈ 𝑌 𝐴𝑅𝑥) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | breq2 5153 | . . 3 ⊢ (𝑥 = 𝐵 → (𝐴𝑅𝑥 ↔ 𝐴𝑅𝐵)) | |
2 | 1 | ralbidv 3167 | . 2 ⊢ (𝑥 = 𝐵 → (∀𝑦 ∈ 𝑌 𝐴𝑅𝑥 ↔ ∀𝑦 ∈ 𝑌 𝐴𝑅𝐵)) |
3 | 2 | rspcev 3606 | 1 ⊢ ((𝐵 ∈ 𝑋 ∧ ∀𝑦 ∈ 𝑌 𝐴𝑅𝐵) → ∃𝑥 ∈ 𝑋 ∀𝑦 ∈ 𝑌 𝐴𝑅𝑥) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 394 = wceq 1533 ∈ wcel 2098 ∀wral 3050 ∃wrex 3059 class class class wbr 5149 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-ext 2696 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 846 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-sb 2060 df-clab 2703 df-cleq 2717 df-clel 2802 df-ral 3051 df-rex 3060 df-rab 3419 df-v 3463 df-dif 3947 df-un 3949 df-ss 3961 df-nul 4323 df-if 4531 df-sn 4631 df-pr 4633 df-op 4637 df-br 5150 |
This theorem is referenced by: axpre-sup 11193 fimaxre2 12190 supaddc 12212 supadd 12213 supmul1 12214 supmullem2 12216 supmul 12217 rpnnen1lem2 12992 iccsupr 13452 supicc 13511 supiccub 13512 supicclub 13513 flval3 13814 fsequb 13974 01sqrexlem3 15225 caubnd2 15338 caubnd 15339 lo1bdd2 15502 lo1bddrp 15503 climcnds 15831 ruclem12 16219 maxprmfct 16681 prmreclem1 16886 prmreclem6 16891 ramz 16995 pgpssslw 19578 gexex 19817 icccmplem2 24779 icccmplem3 24780 reconnlem2 24783 cnllycmp 24922 cncmet 25290 ivthlem2 25421 ivthlem3 25422 cniccbdd 25430 ovolunlem1 25466 ovoliunlem1 25471 ovoliun2 25475 ioombl1lem4 25530 uniioombllem2 25552 uniioombllem6 25557 mbfinf 25634 mbflimsup 25635 itg1climres 25684 itg2i1fseq 25725 itg2i1fseq2 25726 itg2cnlem1 25731 plyeq0lem 26184 ulmbdd 26374 mtestbdd 26381 iblulm 26383 emcllem6 26973 lgambdd 27009 ftalem3 27047 ubthlem2 30747 ubthlem3 30748 htthlem 30793 rge0scvg 33662 esumpcvgval 33809 oddpwdc 34086 mblfinlem3 37244 ismblfin 37246 itg2addnc 37259 ubelsupr 44491 rexabslelem 44905 limsupubuz 45206 liminfreuzlem 45295 dvdivbd 45416 sge0supre 45882 sge0rnbnd 45886 meaiuninc2 45975 hoidmvlelem1 46088 hoidmvlelem4 46091 smfinflem 46310 |
Copyright terms: Public domain | W3C validator |