MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ulmbdd Structured version   Visualization version   GIF version

Theorem ulmbdd 26350
Description: A uniform limit of bounded functions is bounded. (Contributed by Mario Carneiro, 27-Feb-2015.)
Hypotheses
Ref Expression
ulmbdd.z 𝑍 = (ℤ𝑀)
ulmbdd.m (𝜑𝑀 ∈ ℤ)
ulmbdd.f (𝜑𝐹:𝑍⟶(ℂ ↑m 𝑆))
ulmbdd.b ((𝜑𝑘𝑍) → ∃𝑥 ∈ ℝ ∀𝑧𝑆 (abs‘((𝐹𝑘)‘𝑧)) ≤ 𝑥)
ulmbdd.u (𝜑𝐹(⇝𝑢𝑆)𝐺)
Assertion
Ref Expression
ulmbdd (𝜑 → ∃𝑥 ∈ ℝ ∀𝑧𝑆 (abs‘(𝐺𝑧)) ≤ 𝑥)
Distinct variable groups:   𝑥,𝑘,𝑧,𝐹   𝑘,𝐺,𝑥,𝑧   𝜑,𝑘,𝑥,𝑧   𝑆,𝑘,𝑥,𝑧   𝑘,𝑀,𝑧   𝑘,𝑍,𝑥,𝑧
Allowed substitution hint:   𝑀(𝑥)

Proof of Theorem ulmbdd
Dummy variables 𝑗 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ulmbdd.z . . 3 𝑍 = (ℤ𝑀)
2 ulmbdd.m . . 3 (𝜑𝑀 ∈ ℤ)
3 ulmbdd.f . . 3 (𝜑𝐹:𝑍⟶(ℂ ↑m 𝑆))
4 eqidd 2726 . . 3 ((𝜑 ∧ (𝑘𝑍𝑧𝑆)) → ((𝐹𝑘)‘𝑧) = ((𝐹𝑘)‘𝑧))
5 eqidd 2726 . . 3 ((𝜑𝑧𝑆) → (𝐺𝑧) = (𝐺𝑧))
6 ulmbdd.u . . 3 (𝜑𝐹(⇝𝑢𝑆)𝐺)
7 1rp 13008 . . . 4 1 ∈ ℝ+
87a1i 11 . . 3 (𝜑 → 1 ∈ ℝ+)
91, 2, 3, 4, 5, 6, 8ulmi 26338 . 2 (𝜑 → ∃𝑗𝑍𝑘 ∈ (ℤ𝑗)∀𝑧𝑆 (abs‘(((𝐹𝑘)‘𝑧) − (𝐺𝑧))) < 1)
101r19.2uz 15328 . . 3 (∃𝑗𝑍𝑘 ∈ (ℤ𝑗)∀𝑧𝑆 (abs‘(((𝐹𝑘)‘𝑧) − (𝐺𝑧))) < 1 → ∃𝑘𝑍𝑧𝑆 (abs‘(((𝐹𝑘)‘𝑧) − (𝐺𝑧))) < 1)
11 ulmbdd.b . . . . . 6 ((𝜑𝑘𝑍) → ∃𝑥 ∈ ℝ ∀𝑧𝑆 (abs‘((𝐹𝑘)‘𝑧)) ≤ 𝑥)
12 r19.26 3101 . . . . . . . . 9 (∀𝑧𝑆 ((abs‘((𝐹𝑘)‘𝑧)) ≤ 𝑥 ∧ (abs‘(((𝐹𝑘)‘𝑧) − (𝐺𝑧))) < 1) ↔ (∀𝑧𝑆 (abs‘((𝐹𝑘)‘𝑧)) ≤ 𝑥 ∧ ∀𝑧𝑆 (abs‘(((𝐹𝑘)‘𝑧) − (𝐺𝑧))) < 1))
13 peano2re 11415 . . . . . . . . . . 11 (𝑥 ∈ ℝ → (𝑥 + 1) ∈ ℝ)
1413adantl 480 . . . . . . . . . 10 (((𝜑𝑘𝑍) ∧ 𝑥 ∈ ℝ) → (𝑥 + 1) ∈ ℝ)
15 ulmcl 26333 . . . . . . . . . . . . . . . . 17 (𝐹(⇝𝑢𝑆)𝐺𝐺:𝑆⟶ℂ)
166, 15syl 17 . . . . . . . . . . . . . . . 16 (𝜑𝐺:𝑆⟶ℂ)
1716ad3antrrr 728 . . . . . . . . . . . . . . 15 ((((𝜑𝑘𝑍) ∧ 𝑥 ∈ ℝ) ∧ (𝑧𝑆 ∧ ((abs‘((𝐹𝑘)‘𝑧)) ≤ 𝑥 ∧ (abs‘(((𝐹𝑘)‘𝑧) − (𝐺𝑧))) < 1))) → 𝐺:𝑆⟶ℂ)
18 simprl 769 . . . . . . . . . . . . . . 15 ((((𝜑𝑘𝑍) ∧ 𝑥 ∈ ℝ) ∧ (𝑧𝑆 ∧ ((abs‘((𝐹𝑘)‘𝑧)) ≤ 𝑥 ∧ (abs‘(((𝐹𝑘)‘𝑧) − (𝐺𝑧))) < 1))) → 𝑧𝑆)
1917, 18ffvelcdmd 7089 . . . . . . . . . . . . . 14 ((((𝜑𝑘𝑍) ∧ 𝑥 ∈ ℝ) ∧ (𝑧𝑆 ∧ ((abs‘((𝐹𝑘)‘𝑧)) ≤ 𝑥 ∧ (abs‘(((𝐹𝑘)‘𝑧) − (𝐺𝑧))) < 1))) → (𝐺𝑧) ∈ ℂ)
2019abscld 15413 . . . . . . . . . . . . 13 ((((𝜑𝑘𝑍) ∧ 𝑥 ∈ ℝ) ∧ (𝑧𝑆 ∧ ((abs‘((𝐹𝑘)‘𝑧)) ≤ 𝑥 ∧ (abs‘(((𝐹𝑘)‘𝑧) − (𝐺𝑧))) < 1))) → (abs‘(𝐺𝑧)) ∈ ℝ)
213ad3antrrr 728 . . . . . . . . . . . . . . . . . 18 ((((𝜑𝑘𝑍) ∧ 𝑥 ∈ ℝ) ∧ (𝑧𝑆 ∧ ((abs‘((𝐹𝑘)‘𝑧)) ≤ 𝑥 ∧ (abs‘(((𝐹𝑘)‘𝑧) − (𝐺𝑧))) < 1))) → 𝐹:𝑍⟶(ℂ ↑m 𝑆))
22 simpllr 774 . . . . . . . . . . . . . . . . . 18 ((((𝜑𝑘𝑍) ∧ 𝑥 ∈ ℝ) ∧ (𝑧𝑆 ∧ ((abs‘((𝐹𝑘)‘𝑧)) ≤ 𝑥 ∧ (abs‘(((𝐹𝑘)‘𝑧) − (𝐺𝑧))) < 1))) → 𝑘𝑍)
2321, 22ffvelcdmd 7089 . . . . . . . . . . . . . . . . 17 ((((𝜑𝑘𝑍) ∧ 𝑥 ∈ ℝ) ∧ (𝑧𝑆 ∧ ((abs‘((𝐹𝑘)‘𝑧)) ≤ 𝑥 ∧ (abs‘(((𝐹𝑘)‘𝑧) − (𝐺𝑧))) < 1))) → (𝐹𝑘) ∈ (ℂ ↑m 𝑆))
24 elmapi 8864 . . . . . . . . . . . . . . . . 17 ((𝐹𝑘) ∈ (ℂ ↑m 𝑆) → (𝐹𝑘):𝑆⟶ℂ)
2523, 24syl 17 . . . . . . . . . . . . . . . 16 ((((𝜑𝑘𝑍) ∧ 𝑥 ∈ ℝ) ∧ (𝑧𝑆 ∧ ((abs‘((𝐹𝑘)‘𝑧)) ≤ 𝑥 ∧ (abs‘(((𝐹𝑘)‘𝑧) − (𝐺𝑧))) < 1))) → (𝐹𝑘):𝑆⟶ℂ)
2625, 18ffvelcdmd 7089 . . . . . . . . . . . . . . 15 ((((𝜑𝑘𝑍) ∧ 𝑥 ∈ ℝ) ∧ (𝑧𝑆 ∧ ((abs‘((𝐹𝑘)‘𝑧)) ≤ 𝑥 ∧ (abs‘(((𝐹𝑘)‘𝑧) − (𝐺𝑧))) < 1))) → ((𝐹𝑘)‘𝑧) ∈ ℂ)
2726abscld 15413 . . . . . . . . . . . . . 14 ((((𝜑𝑘𝑍) ∧ 𝑥 ∈ ℝ) ∧ (𝑧𝑆 ∧ ((abs‘((𝐹𝑘)‘𝑧)) ≤ 𝑥 ∧ (abs‘(((𝐹𝑘)‘𝑧) − (𝐺𝑧))) < 1))) → (abs‘((𝐹𝑘)‘𝑧)) ∈ ℝ)
2819, 26subcld 11599 . . . . . . . . . . . . . . 15 ((((𝜑𝑘𝑍) ∧ 𝑥 ∈ ℝ) ∧ (𝑧𝑆 ∧ ((abs‘((𝐹𝑘)‘𝑧)) ≤ 𝑥 ∧ (abs‘(((𝐹𝑘)‘𝑧) − (𝐺𝑧))) < 1))) → ((𝐺𝑧) − ((𝐹𝑘)‘𝑧)) ∈ ℂ)
2928abscld 15413 . . . . . . . . . . . . . 14 ((((𝜑𝑘𝑍) ∧ 𝑥 ∈ ℝ) ∧ (𝑧𝑆 ∧ ((abs‘((𝐹𝑘)‘𝑧)) ≤ 𝑥 ∧ (abs‘(((𝐹𝑘)‘𝑧) − (𝐺𝑧))) < 1))) → (abs‘((𝐺𝑧) − ((𝐹𝑘)‘𝑧))) ∈ ℝ)
3027, 29readdcld 11271 . . . . . . . . . . . . 13 ((((𝜑𝑘𝑍) ∧ 𝑥 ∈ ℝ) ∧ (𝑧𝑆 ∧ ((abs‘((𝐹𝑘)‘𝑧)) ≤ 𝑥 ∧ (abs‘(((𝐹𝑘)‘𝑧) − (𝐺𝑧))) < 1))) → ((abs‘((𝐹𝑘)‘𝑧)) + (abs‘((𝐺𝑧) − ((𝐹𝑘)‘𝑧)))) ∈ ℝ)
3114adantr 479 . . . . . . . . . . . . 13 ((((𝜑𝑘𝑍) ∧ 𝑥 ∈ ℝ) ∧ (𝑧𝑆 ∧ ((abs‘((𝐹𝑘)‘𝑧)) ≤ 𝑥 ∧ (abs‘(((𝐹𝑘)‘𝑧) − (𝐺𝑧))) < 1))) → (𝑥 + 1) ∈ ℝ)
3226, 19pncan3d 11602 . . . . . . . . . . . . . . 15 ((((𝜑𝑘𝑍) ∧ 𝑥 ∈ ℝ) ∧ (𝑧𝑆 ∧ ((abs‘((𝐹𝑘)‘𝑧)) ≤ 𝑥 ∧ (abs‘(((𝐹𝑘)‘𝑧) − (𝐺𝑧))) < 1))) → (((𝐹𝑘)‘𝑧) + ((𝐺𝑧) − ((𝐹𝑘)‘𝑧))) = (𝐺𝑧))
3332fveq2d 6895 . . . . . . . . . . . . . 14 ((((𝜑𝑘𝑍) ∧ 𝑥 ∈ ℝ) ∧ (𝑧𝑆 ∧ ((abs‘((𝐹𝑘)‘𝑧)) ≤ 𝑥 ∧ (abs‘(((𝐹𝑘)‘𝑧) − (𝐺𝑧))) < 1))) → (abs‘(((𝐹𝑘)‘𝑧) + ((𝐺𝑧) − ((𝐹𝑘)‘𝑧)))) = (abs‘(𝐺𝑧)))
3426, 28abstrid 15433 . . . . . . . . . . . . . 14 ((((𝜑𝑘𝑍) ∧ 𝑥 ∈ ℝ) ∧ (𝑧𝑆 ∧ ((abs‘((𝐹𝑘)‘𝑧)) ≤ 𝑥 ∧ (abs‘(((𝐹𝑘)‘𝑧) − (𝐺𝑧))) < 1))) → (abs‘(((𝐹𝑘)‘𝑧) + ((𝐺𝑧) − ((𝐹𝑘)‘𝑧)))) ≤ ((abs‘((𝐹𝑘)‘𝑧)) + (abs‘((𝐺𝑧) − ((𝐹𝑘)‘𝑧)))))
3533, 34eqbrtrrd 5167 . . . . . . . . . . . . 13 ((((𝜑𝑘𝑍) ∧ 𝑥 ∈ ℝ) ∧ (𝑧𝑆 ∧ ((abs‘((𝐹𝑘)‘𝑧)) ≤ 𝑥 ∧ (abs‘(((𝐹𝑘)‘𝑧) − (𝐺𝑧))) < 1))) → (abs‘(𝐺𝑧)) ≤ ((abs‘((𝐹𝑘)‘𝑧)) + (abs‘((𝐺𝑧) − ((𝐹𝑘)‘𝑧)))))
36 simplr 767 . . . . . . . . . . . . . 14 ((((𝜑𝑘𝑍) ∧ 𝑥 ∈ ℝ) ∧ (𝑧𝑆 ∧ ((abs‘((𝐹𝑘)‘𝑧)) ≤ 𝑥 ∧ (abs‘(((𝐹𝑘)‘𝑧) − (𝐺𝑧))) < 1))) → 𝑥 ∈ ℝ)
37 1re 11242 . . . . . . . . . . . . . . 15 1 ∈ ℝ
3837a1i 11 . . . . . . . . . . . . . 14 ((((𝜑𝑘𝑍) ∧ 𝑥 ∈ ℝ) ∧ (𝑧𝑆 ∧ ((abs‘((𝐹𝑘)‘𝑧)) ≤ 𝑥 ∧ (abs‘(((𝐹𝑘)‘𝑧) − (𝐺𝑧))) < 1))) → 1 ∈ ℝ)
39 simprrl 779 . . . . . . . . . . . . . 14 ((((𝜑𝑘𝑍) ∧ 𝑥 ∈ ℝ) ∧ (𝑧𝑆 ∧ ((abs‘((𝐹𝑘)‘𝑧)) ≤ 𝑥 ∧ (abs‘(((𝐹𝑘)‘𝑧) − (𝐺𝑧))) < 1))) → (abs‘((𝐹𝑘)‘𝑧)) ≤ 𝑥)
4019, 26abssubd 15430 . . . . . . . . . . . . . . . 16 ((((𝜑𝑘𝑍) ∧ 𝑥 ∈ ℝ) ∧ (𝑧𝑆 ∧ ((abs‘((𝐹𝑘)‘𝑧)) ≤ 𝑥 ∧ (abs‘(((𝐹𝑘)‘𝑧) − (𝐺𝑧))) < 1))) → (abs‘((𝐺𝑧) − ((𝐹𝑘)‘𝑧))) = (abs‘(((𝐹𝑘)‘𝑧) − (𝐺𝑧))))
41 simprrr 780 . . . . . . . . . . . . . . . 16 ((((𝜑𝑘𝑍) ∧ 𝑥 ∈ ℝ) ∧ (𝑧𝑆 ∧ ((abs‘((𝐹𝑘)‘𝑧)) ≤ 𝑥 ∧ (abs‘(((𝐹𝑘)‘𝑧) − (𝐺𝑧))) < 1))) → (abs‘(((𝐹𝑘)‘𝑧) − (𝐺𝑧))) < 1)
4240, 41eqbrtrd 5165 . . . . . . . . . . . . . . 15 ((((𝜑𝑘𝑍) ∧ 𝑥 ∈ ℝ) ∧ (𝑧𝑆 ∧ ((abs‘((𝐹𝑘)‘𝑧)) ≤ 𝑥 ∧ (abs‘(((𝐹𝑘)‘𝑧) − (𝐺𝑧))) < 1))) → (abs‘((𝐺𝑧) − ((𝐹𝑘)‘𝑧))) < 1)
43 ltle 11330 . . . . . . . . . . . . . . . 16 (((abs‘((𝐺𝑧) − ((𝐹𝑘)‘𝑧))) ∈ ℝ ∧ 1 ∈ ℝ) → ((abs‘((𝐺𝑧) − ((𝐹𝑘)‘𝑧))) < 1 → (abs‘((𝐺𝑧) − ((𝐹𝑘)‘𝑧))) ≤ 1))
4429, 37, 43sylancl 584 . . . . . . . . . . . . . . 15 ((((𝜑𝑘𝑍) ∧ 𝑥 ∈ ℝ) ∧ (𝑧𝑆 ∧ ((abs‘((𝐹𝑘)‘𝑧)) ≤ 𝑥 ∧ (abs‘(((𝐹𝑘)‘𝑧) − (𝐺𝑧))) < 1))) → ((abs‘((𝐺𝑧) − ((𝐹𝑘)‘𝑧))) < 1 → (abs‘((𝐺𝑧) − ((𝐹𝑘)‘𝑧))) ≤ 1))
4542, 44mpd 15 . . . . . . . . . . . . . 14 ((((𝜑𝑘𝑍) ∧ 𝑥 ∈ ℝ) ∧ (𝑧𝑆 ∧ ((abs‘((𝐹𝑘)‘𝑧)) ≤ 𝑥 ∧ (abs‘(((𝐹𝑘)‘𝑧) − (𝐺𝑧))) < 1))) → (abs‘((𝐺𝑧) − ((𝐹𝑘)‘𝑧))) ≤ 1)
4627, 29, 36, 38, 39, 45le2addd 11861 . . . . . . . . . . . . 13 ((((𝜑𝑘𝑍) ∧ 𝑥 ∈ ℝ) ∧ (𝑧𝑆 ∧ ((abs‘((𝐹𝑘)‘𝑧)) ≤ 𝑥 ∧ (abs‘(((𝐹𝑘)‘𝑧) − (𝐺𝑧))) < 1))) → ((abs‘((𝐹𝑘)‘𝑧)) + (abs‘((𝐺𝑧) − ((𝐹𝑘)‘𝑧)))) ≤ (𝑥 + 1))
4720, 30, 31, 35, 46letrd 11399 . . . . . . . . . . . 12 ((((𝜑𝑘𝑍) ∧ 𝑥 ∈ ℝ) ∧ (𝑧𝑆 ∧ ((abs‘((𝐹𝑘)‘𝑧)) ≤ 𝑥 ∧ (abs‘(((𝐹𝑘)‘𝑧) − (𝐺𝑧))) < 1))) → (abs‘(𝐺𝑧)) ≤ (𝑥 + 1))
4847expr 455 . . . . . . . . . . 11 ((((𝜑𝑘𝑍) ∧ 𝑥 ∈ ℝ) ∧ 𝑧𝑆) → (((abs‘((𝐹𝑘)‘𝑧)) ≤ 𝑥 ∧ (abs‘(((𝐹𝑘)‘𝑧) − (𝐺𝑧))) < 1) → (abs‘(𝐺𝑧)) ≤ (𝑥 + 1)))
4948ralimdva 3157 . . . . . . . . . 10 (((𝜑𝑘𝑍) ∧ 𝑥 ∈ ℝ) → (∀𝑧𝑆 ((abs‘((𝐹𝑘)‘𝑧)) ≤ 𝑥 ∧ (abs‘(((𝐹𝑘)‘𝑧) − (𝐺𝑧))) < 1) → ∀𝑧𝑆 (abs‘(𝐺𝑧)) ≤ (𝑥 + 1)))
50 brralrspcev 5203 . . . . . . . . . 10 (((𝑥 + 1) ∈ ℝ ∧ ∀𝑧𝑆 (abs‘(𝐺𝑧)) ≤ (𝑥 + 1)) → ∃𝑦 ∈ ℝ ∀𝑧𝑆 (abs‘(𝐺𝑧)) ≤ 𝑦)
5114, 49, 50syl6an 682 . . . . . . . . 9 (((𝜑𝑘𝑍) ∧ 𝑥 ∈ ℝ) → (∀𝑧𝑆 ((abs‘((𝐹𝑘)‘𝑧)) ≤ 𝑥 ∧ (abs‘(((𝐹𝑘)‘𝑧) − (𝐺𝑧))) < 1) → ∃𝑦 ∈ ℝ ∀𝑧𝑆 (abs‘(𝐺𝑧)) ≤ 𝑦))
5212, 51biimtrrid 242 . . . . . . . 8 (((𝜑𝑘𝑍) ∧ 𝑥 ∈ ℝ) → ((∀𝑧𝑆 (abs‘((𝐹𝑘)‘𝑧)) ≤ 𝑥 ∧ ∀𝑧𝑆 (abs‘(((𝐹𝑘)‘𝑧) − (𝐺𝑧))) < 1) → ∃𝑦 ∈ ℝ ∀𝑧𝑆 (abs‘(𝐺𝑧)) ≤ 𝑦))
5352expd 414 . . . . . . 7 (((𝜑𝑘𝑍) ∧ 𝑥 ∈ ℝ) → (∀𝑧𝑆 (abs‘((𝐹𝑘)‘𝑧)) ≤ 𝑥 → (∀𝑧𝑆 (abs‘(((𝐹𝑘)‘𝑧) − (𝐺𝑧))) < 1 → ∃𝑦 ∈ ℝ ∀𝑧𝑆 (abs‘(𝐺𝑧)) ≤ 𝑦)))
5453rexlimdva 3145 . . . . . 6 ((𝜑𝑘𝑍) → (∃𝑥 ∈ ℝ ∀𝑧𝑆 (abs‘((𝐹𝑘)‘𝑧)) ≤ 𝑥 → (∀𝑧𝑆 (abs‘(((𝐹𝑘)‘𝑧) − (𝐺𝑧))) < 1 → ∃𝑦 ∈ ℝ ∀𝑧𝑆 (abs‘(𝐺𝑧)) ≤ 𝑦)))
5511, 54mpd 15 . . . . 5 ((𝜑𝑘𝑍) → (∀𝑧𝑆 (abs‘(((𝐹𝑘)‘𝑧) − (𝐺𝑧))) < 1 → ∃𝑦 ∈ ℝ ∀𝑧𝑆 (abs‘(𝐺𝑧)) ≤ 𝑦))
56 breq2 5147 . . . . . . 7 (𝑦 = 𝑥 → ((abs‘(𝐺𝑧)) ≤ 𝑦 ↔ (abs‘(𝐺𝑧)) ≤ 𝑥))
5756ralbidv 3168 . . . . . 6 (𝑦 = 𝑥 → (∀𝑧𝑆 (abs‘(𝐺𝑧)) ≤ 𝑦 ↔ ∀𝑧𝑆 (abs‘(𝐺𝑧)) ≤ 𝑥))
5857cbvrexvw 3226 . . . . 5 (∃𝑦 ∈ ℝ ∀𝑧𝑆 (abs‘(𝐺𝑧)) ≤ 𝑦 ↔ ∃𝑥 ∈ ℝ ∀𝑧𝑆 (abs‘(𝐺𝑧)) ≤ 𝑥)
5955, 58imbitrdi 250 . . . 4 ((𝜑𝑘𝑍) → (∀𝑧𝑆 (abs‘(((𝐹𝑘)‘𝑧) − (𝐺𝑧))) < 1 → ∃𝑥 ∈ ℝ ∀𝑧𝑆 (abs‘(𝐺𝑧)) ≤ 𝑥))
6059rexlimdva 3145 . . 3 (𝜑 → (∃𝑘𝑍𝑧𝑆 (abs‘(((𝐹𝑘)‘𝑧) − (𝐺𝑧))) < 1 → ∃𝑥 ∈ ℝ ∀𝑧𝑆 (abs‘(𝐺𝑧)) ≤ 𝑥))
6110, 60syl5 34 . 2 (𝜑 → (∃𝑗𝑍𝑘 ∈ (ℤ𝑗)∀𝑧𝑆 (abs‘(((𝐹𝑘)‘𝑧) − (𝐺𝑧))) < 1 → ∃𝑥 ∈ ℝ ∀𝑧𝑆 (abs‘(𝐺𝑧)) ≤ 𝑥))
629, 61mpd 15 1 (𝜑 → ∃𝑥 ∈ ℝ ∀𝑧𝑆 (abs‘(𝐺𝑧)) ≤ 𝑥)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 394   = wceq 1533  wcel 2098  wral 3051  wrex 3060   class class class wbr 5143  wf 6538  cfv 6542  (class class class)co 7415  m cmap 8841  cc 11134  cr 11135  1c1 11137   + caddc 11139   < clt 11276  cle 11277  cmin 11472  cz 12586  cuz 12850  +crp 13004  abscabs 15211  𝑢culm 26328
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2166  ax-ext 2696  ax-rep 5280  ax-sep 5294  ax-nul 5301  ax-pow 5359  ax-pr 5423  ax-un 7737  ax-cnex 11192  ax-resscn 11193  ax-1cn 11194  ax-icn 11195  ax-addcl 11196  ax-addrcl 11197  ax-mulcl 11198  ax-mulrcl 11199  ax-mulcom 11200  ax-addass 11201  ax-mulass 11202  ax-distr 11203  ax-i2m1 11204  ax-1ne0 11205  ax-1rid 11206  ax-rnegex 11207  ax-rrecex 11208  ax-cnre 11209  ax-pre-lttri 11210  ax-pre-lttrn 11211  ax-pre-ltadd 11212  ax-pre-mulgt0 11213  ax-pre-sup 11214
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 846  df-3or 1085  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2528  df-eu 2557  df-clab 2703  df-cleq 2717  df-clel 2802  df-nfc 2877  df-ne 2931  df-nel 3037  df-ral 3052  df-rex 3061  df-rmo 3364  df-reu 3365  df-rab 3420  df-v 3465  df-sbc 3770  df-csb 3886  df-dif 3943  df-un 3945  df-in 3947  df-ss 3957  df-pss 3960  df-nul 4319  df-if 4525  df-pw 4600  df-sn 4625  df-pr 4627  df-op 4631  df-uni 4904  df-iun 4993  df-br 5144  df-opab 5206  df-mpt 5227  df-tr 5261  df-id 5570  df-eprel 5576  df-po 5584  df-so 5585  df-fr 5627  df-we 5629  df-xp 5678  df-rel 5679  df-cnv 5680  df-co 5681  df-dm 5682  df-rn 5683  df-res 5684  df-ima 5685  df-pred 6300  df-ord 6367  df-on 6368  df-lim 6369  df-suc 6370  df-iota 6494  df-fun 6544  df-fn 6545  df-f 6546  df-f1 6547  df-fo 6548  df-f1o 6549  df-fv 6550  df-riota 7371  df-ov 7418  df-oprab 7419  df-mpo 7420  df-om 7868  df-1st 7989  df-2nd 7990  df-frecs 8283  df-wrecs 8314  df-recs 8388  df-rdg 8427  df-er 8721  df-map 8843  df-pm 8844  df-en 8961  df-dom 8962  df-sdom 8963  df-sup 9463  df-pnf 11278  df-mnf 11279  df-xr 11280  df-ltxr 11281  df-le 11282  df-sub 11474  df-neg 11475  df-div 11900  df-nn 12241  df-2 12303  df-3 12304  df-n0 12501  df-z 12587  df-uz 12851  df-rp 13005  df-seq 13997  df-exp 14057  df-cj 15076  df-re 15077  df-im 15078  df-sqrt 15212  df-abs 15213  df-ulm 26329
This theorem is referenced by:  mtestbdd  26357
  Copyright terms: Public domain W3C validator
OSZAR »