![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > caufpm | Structured version Visualization version GIF version |
Description: Inclusion of a Cauchy sequence, under our definition. (Contributed by NM, 7-Dec-2006.) (Revised by Mario Carneiro, 24-Dec-2013.) |
Ref | Expression |
---|---|
caufpm | ⊢ ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝐹 ∈ (Cau‘𝐷)) → 𝐹 ∈ (𝑋 ↑pm ℂ)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | iscau 25217 | . 2 ⊢ (𝐷 ∈ (∞Met‘𝑋) → (𝐹 ∈ (Cau‘𝐷) ↔ (𝐹 ∈ (𝑋 ↑pm ℂ) ∧ ∀𝑥 ∈ ℝ+ ∃𝑦 ∈ ℤ (𝐹 ↾ (ℤ≥‘𝑦)):(ℤ≥‘𝑦)⟶((𝐹‘𝑦)(ball‘𝐷)𝑥)))) | |
2 | 1 | simprbda 498 | 1 ⊢ ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝐹 ∈ (Cau‘𝐷)) → 𝐹 ∈ (𝑋 ↑pm ℂ)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 ∈ wcel 2099 ∀wral 3058 ∃wrex 3067 ↾ cres 5680 ⟶wf 6544 ‘cfv 6548 (class class class)co 7420 ↑pm cpm 8846 ℂcc 11137 ℤcz 12589 ℤ≥cuz 12853 ℝ+crp 13007 ∞Metcxmet 21264 ballcbl 21266 Cauccau 25194 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1790 ax-4 1804 ax-5 1906 ax-6 1964 ax-7 2004 ax-8 2101 ax-9 2109 ax-10 2130 ax-11 2147 ax-12 2167 ax-ext 2699 ax-sep 5299 ax-nul 5306 ax-pow 5365 ax-pr 5429 ax-un 7740 ax-cnex 11195 ax-resscn 11196 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 847 df-3an 1087 df-tru 1537 df-fal 1547 df-ex 1775 df-nf 1779 df-sb 2061 df-mo 2530 df-eu 2559 df-clab 2706 df-cleq 2720 df-clel 2806 df-nfc 2881 df-ne 2938 df-ral 3059 df-rex 3068 df-rab 3430 df-v 3473 df-sbc 3777 df-csb 3893 df-dif 3950 df-un 3952 df-in 3954 df-ss 3964 df-nul 4324 df-if 4530 df-pw 4605 df-sn 4630 df-pr 4632 df-op 4636 df-uni 4909 df-br 5149 df-opab 5211 df-mpt 5232 df-id 5576 df-xp 5684 df-rel 5685 df-cnv 5686 df-co 5687 df-dm 5688 df-rn 5689 df-res 5690 df-iota 6500 df-fun 6550 df-fn 6551 df-f 6552 df-fv 6556 df-ov 7423 df-oprab 7424 df-mpo 7425 df-map 8847 df-xr 11283 df-xmet 21272 df-cau 25197 |
This theorem is referenced by: cmetcaulem 25229 causs 25239 |
Copyright terms: Public domain | W3C validator |