![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > cfilfil | Structured version Visualization version GIF version |
Description: A Cauchy filter is a filter. (Contributed by Mario Carneiro, 13-Oct-2015.) |
Ref | Expression |
---|---|
cfilfil | ⊢ ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝐹 ∈ (CauFil‘𝐷)) → 𝐹 ∈ (Fil‘𝑋)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | iscfil 25211 | . 2 ⊢ (𝐷 ∈ (∞Met‘𝑋) → (𝐹 ∈ (CauFil‘𝐷) ↔ (𝐹 ∈ (Fil‘𝑋) ∧ ∀𝑥 ∈ ℝ+ ∃𝑦 ∈ 𝐹 (𝐷 “ (𝑦 × 𝑦)) ⊆ (0[,)𝑥)))) | |
2 | 1 | simprbda 497 | 1 ⊢ ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝐹 ∈ (CauFil‘𝐷)) → 𝐹 ∈ (Fil‘𝑋)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 394 ∈ wcel 2098 ∀wral 3057 ∃wrex 3066 ⊆ wss 3947 × cxp 5678 “ cima 5683 ‘cfv 6551 (class class class)co 7424 0cc0 11144 ℝ+crp 13012 [,)cico 13364 ∞Metcxmet 21269 Filcfil 23767 CauFilccfil 25198 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2166 ax-ext 2698 ax-sep 5301 ax-nul 5308 ax-pow 5367 ax-pr 5431 ax-un 7744 ax-cnex 11200 ax-resscn 11201 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 846 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2529 df-eu 2558 df-clab 2705 df-cleq 2719 df-clel 2805 df-nfc 2880 df-ne 2937 df-ral 3058 df-rex 3067 df-rab 3429 df-v 3473 df-sbc 3777 df-dif 3950 df-un 3952 df-in 3954 df-ss 3964 df-nul 4325 df-if 4531 df-pw 4606 df-sn 4631 df-pr 4633 df-op 4637 df-uni 4911 df-br 5151 df-opab 5213 df-mpt 5234 df-id 5578 df-xp 5686 df-rel 5687 df-cnv 5688 df-co 5689 df-dm 5690 df-rn 5691 df-res 5692 df-ima 5693 df-iota 6503 df-fun 6553 df-fn 6554 df-f 6555 df-fv 6559 df-ov 7427 df-oprab 7428 df-mpo 7429 df-map 8851 df-xr 11288 df-xmet 21277 df-cfil 25201 |
This theorem is referenced by: cfil3i 25215 iscfil3 25219 cfilfcls 25220 iscmet3 25239 cfilresi 25241 cmetss 25262 relcmpcmet 25264 cfilucfil4 25267 fmcncfil 33537 |
Copyright terms: Public domain | W3C validator |