![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > cfon | Structured version Visualization version GIF version |
Description: The cofinality of any set is an ordinal (although it only makes sense when 𝐴 is an ordinal). (Contributed by Mario Carneiro, 9-Mar-2013.) |
Ref | Expression |
---|---|
cfon | ⊢ (cf‘𝐴) ∈ On |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cardcf 10275 | . 2 ⊢ (card‘(cf‘𝐴)) = (cf‘𝐴) | |
2 | cardon 9967 | . 2 ⊢ (card‘(cf‘𝐴)) ∈ On | |
3 | 1, 2 | eqeltrri 2822 | 1 ⊢ (cf‘𝐴) ∈ On |
Colors of variables: wff setvar class |
Syntax hints: ∈ wcel 2098 Oncon0 6369 ‘cfv 6547 cardccrd 9958 cfccf 9960 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2166 ax-ext 2696 ax-sep 5299 ax-nul 5306 ax-pow 5364 ax-pr 5428 ax-un 7739 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 846 df-3or 1085 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2528 df-eu 2557 df-clab 2703 df-cleq 2717 df-clel 2802 df-nfc 2877 df-ne 2931 df-ral 3052 df-rex 3061 df-rab 3420 df-v 3465 df-dif 3948 df-un 3950 df-in 3952 df-ss 3962 df-pss 3965 df-nul 4324 df-if 4530 df-pw 4605 df-sn 4630 df-pr 4632 df-op 4636 df-uni 4909 df-int 4950 df-br 5149 df-opab 5211 df-mpt 5232 df-tr 5266 df-id 5575 df-eprel 5581 df-po 5589 df-so 5590 df-fr 5632 df-we 5634 df-xp 5683 df-rel 5684 df-cnv 5685 df-co 5686 df-dm 5687 df-rn 5688 df-res 5689 df-ima 5690 df-ord 6372 df-on 6373 df-iota 6499 df-fun 6549 df-fn 6550 df-f 6551 df-f1 6552 df-fo 6553 df-f1o 6554 df-fv 6555 df-er 8723 df-en 8963 df-card 9962 df-cf 9964 |
This theorem is referenced by: cfslb2n 10291 cfsmolem 10293 cfcoflem 10295 cfcof 10297 cfidm 10298 alephreg 10605 winaon 10711 inawina 10713 winainf 10717 rankcf 10800 tskcard 10804 gruina 10841 |
Copyright terms: Public domain | W3C validator |