MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  conncompcld Structured version   Visualization version   GIF version

Theorem conncompcld 23331
Description: The connected component containing 𝐴 is a closed set. (Contributed by Mario Carneiro, 19-Mar-2015.)
Hypothesis
Ref Expression
conncomp.2 𝑆 = {𝑥 ∈ 𝒫 𝑋 ∣ (𝐴𝑥 ∧ (𝐽t 𝑥) ∈ Conn)}
Assertion
Ref Expression
conncompcld ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐴𝑋) → 𝑆 ∈ (Clsd‘𝐽))
Distinct variable groups:   𝑥,𝐴   𝑥,𝐽   𝑥,𝑋
Allowed substitution hint:   𝑆(𝑥)

Proof of Theorem conncompcld
StepHypRef Expression
1 topontop 22808 . . . . 5 (𝐽 ∈ (TopOn‘𝑋) → 𝐽 ∈ Top)
2 conncomp.2 . . . . . . 7 𝑆 = {𝑥 ∈ 𝒫 𝑋 ∣ (𝐴𝑥 ∧ (𝐽t 𝑥) ∈ Conn)}
3 ssrab2 4073 . . . . . . . 8 {𝑥 ∈ 𝒫 𝑋 ∣ (𝐴𝑥 ∧ (𝐽t 𝑥) ∈ Conn)} ⊆ 𝒫 𝑋
4 sspwuni 5097 . . . . . . . 8 ({𝑥 ∈ 𝒫 𝑋 ∣ (𝐴𝑥 ∧ (𝐽t 𝑥) ∈ Conn)} ⊆ 𝒫 𝑋 {𝑥 ∈ 𝒫 𝑋 ∣ (𝐴𝑥 ∧ (𝐽t 𝑥) ∈ Conn)} ⊆ 𝑋)
53, 4mpbi 229 . . . . . . 7 {𝑥 ∈ 𝒫 𝑋 ∣ (𝐴𝑥 ∧ (𝐽t 𝑥) ∈ Conn)} ⊆ 𝑋
62, 5eqsstri 4012 . . . . . 6 𝑆𝑋
7 toponuni 22809 . . . . . . 7 (𝐽 ∈ (TopOn‘𝑋) → 𝑋 = 𝐽)
87adantr 480 . . . . . 6 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐴𝑋) → 𝑋 = 𝐽)
96, 8sseqtrid 4030 . . . . 5 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐴𝑋) → 𝑆 𝐽)
10 eqid 2728 . . . . . 6 𝐽 = 𝐽
1110clsss3 22956 . . . . 5 ((𝐽 ∈ Top ∧ 𝑆 𝐽) → ((cls‘𝐽)‘𝑆) ⊆ 𝐽)
121, 9, 11syl2an2r 684 . . . 4 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐴𝑋) → ((cls‘𝐽)‘𝑆) ⊆ 𝐽)
1312, 8sseqtrrd 4019 . . 3 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐴𝑋) → ((cls‘𝐽)‘𝑆) ⊆ 𝑋)
1410sscls 22953 . . . . 5 ((𝐽 ∈ Top ∧ 𝑆 𝐽) → 𝑆 ⊆ ((cls‘𝐽)‘𝑆))
151, 9, 14syl2an2r 684 . . . 4 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐴𝑋) → 𝑆 ⊆ ((cls‘𝐽)‘𝑆))
162conncompid 23328 . . . 4 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐴𝑋) → 𝐴𝑆)
1715, 16sseldd 3979 . . 3 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐴𝑋) → 𝐴 ∈ ((cls‘𝐽)‘𝑆))
18 simpl 482 . . . 4 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐴𝑋) → 𝐽 ∈ (TopOn‘𝑋))
196a1i 11 . . . 4 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐴𝑋) → 𝑆𝑋)
202conncompconn 23329 . . . 4 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐴𝑋) → (𝐽t 𝑆) ∈ Conn)
21 clsconn 23327 . . . 4 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝑆𝑋 ∧ (𝐽t 𝑆) ∈ Conn) → (𝐽t ((cls‘𝐽)‘𝑆)) ∈ Conn)
2218, 19, 20, 21syl3anc 1369 . . 3 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐴𝑋) → (𝐽t ((cls‘𝐽)‘𝑆)) ∈ Conn)
232conncompss 23330 . . 3 ((((cls‘𝐽)‘𝑆) ⊆ 𝑋𝐴 ∈ ((cls‘𝐽)‘𝑆) ∧ (𝐽t ((cls‘𝐽)‘𝑆)) ∈ Conn) → ((cls‘𝐽)‘𝑆) ⊆ 𝑆)
2413, 17, 22, 23syl3anc 1369 . 2 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐴𝑋) → ((cls‘𝐽)‘𝑆) ⊆ 𝑆)
2510iscld4 22962 . . 3 ((𝐽 ∈ Top ∧ 𝑆 𝐽) → (𝑆 ∈ (Clsd‘𝐽) ↔ ((cls‘𝐽)‘𝑆) ⊆ 𝑆))
261, 9, 25syl2an2r 684 . 2 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐴𝑋) → (𝑆 ∈ (Clsd‘𝐽) ↔ ((cls‘𝐽)‘𝑆) ⊆ 𝑆))
2724, 26mpbird 257 1 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐴𝑋) → 𝑆 ∈ (Clsd‘𝐽))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 395   = wceq 1534  wcel 2099  {crab 3428  wss 3945  𝒫 cpw 4598   cuni 4903  cfv 6542  (class class class)co 7414  t crest 17395  Topctop 22788  TopOnctopon 22805  Clsdccld 22913  clsccl 22915  Conncconn 23308
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1790  ax-4 1804  ax-5 1906  ax-6 1964  ax-7 2004  ax-8 2101  ax-9 2109  ax-10 2130  ax-11 2147  ax-12 2167  ax-ext 2699  ax-rep 5279  ax-sep 5293  ax-nul 5300  ax-pow 5359  ax-pr 5423  ax-un 7734
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 847  df-3or 1086  df-3an 1087  df-tru 1537  df-fal 1547  df-ex 1775  df-nf 1779  df-sb 2061  df-mo 2530  df-eu 2559  df-clab 2706  df-cleq 2720  df-clel 2806  df-nfc 2881  df-ne 2937  df-ral 3058  df-rex 3067  df-reu 3373  df-rab 3429  df-v 3472  df-sbc 3776  df-csb 3891  df-dif 3948  df-un 3950  df-in 3952  df-ss 3962  df-pss 3964  df-nul 4319  df-if 4525  df-pw 4600  df-sn 4625  df-pr 4627  df-op 4631  df-uni 4904  df-int 4945  df-iun 4993  df-iin 4994  df-br 5143  df-opab 5205  df-mpt 5226  df-tr 5260  df-id 5570  df-eprel 5576  df-po 5584  df-so 5585  df-fr 5627  df-we 5629  df-xp 5678  df-rel 5679  df-cnv 5680  df-co 5681  df-dm 5682  df-rn 5683  df-res 5684  df-ima 5685  df-ord 6366  df-on 6367  df-lim 6368  df-suc 6369  df-iota 6494  df-fun 6544  df-fn 6545  df-f 6546  df-f1 6547  df-fo 6548  df-f1o 6549  df-fv 6550  df-ov 7417  df-oprab 7418  df-mpo 7419  df-om 7865  df-1st 7987  df-2nd 7988  df-en 8958  df-fin 8961  df-fi 9428  df-rest 17397  df-topgen 17418  df-top 22789  df-topon 22806  df-bases 22842  df-cld 22916  df-ntr 22917  df-cls 22918  df-conn 23309
This theorem is referenced by:  conncompclo  23332
  Copyright terms: Public domain W3C validator
OSZAR »