MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cplem2 Structured version   Visualization version   GIF version

Theorem cplem2 9919
Description: Lemma for the Collection Principle cp 9920. (Contributed by NM, 17-Oct-2003.)
Hypothesis
Ref Expression
cplem2.1 𝐴 ∈ V
Assertion
Ref Expression
cplem2 𝑦𝑥𝐴 (𝐵 ≠ ∅ → (𝐵𝑦) ≠ ∅)
Distinct variable groups:   𝑥,𝑦,𝐴   𝑦,𝐵
Allowed substitution hint:   𝐵(𝑥)

Proof of Theorem cplem2
Dummy variables 𝑧 𝑤 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 cplem2.1 . . 3 𝐴 ∈ V
2 scottex 9914 . . 3 {𝑧𝐵 ∣ ∀𝑤𝐵 (rank‘𝑧) ⊆ (rank‘𝑤)} ∈ V
31, 2iunex 7976 . 2 𝑥𝐴 {𝑧𝐵 ∣ ∀𝑤𝐵 (rank‘𝑧) ⊆ (rank‘𝑤)} ∈ V
4 nfiu1 5032 . . . 4 𝑥 𝑥𝐴 {𝑧𝐵 ∣ ∀𝑤𝐵 (rank‘𝑧) ⊆ (rank‘𝑤)}
54nfeq2 2916 . . 3 𝑥 𝑦 = 𝑥𝐴 {𝑧𝐵 ∣ ∀𝑤𝐵 (rank‘𝑧) ⊆ (rank‘𝑤)}
6 ineq2 4206 . . . . 5 (𝑦 = 𝑥𝐴 {𝑧𝐵 ∣ ∀𝑤𝐵 (rank‘𝑧) ⊆ (rank‘𝑤)} → (𝐵𝑦) = (𝐵 𝑥𝐴 {𝑧𝐵 ∣ ∀𝑤𝐵 (rank‘𝑧) ⊆ (rank‘𝑤)}))
76neeq1d 2996 . . . 4 (𝑦 = 𝑥𝐴 {𝑧𝐵 ∣ ∀𝑤𝐵 (rank‘𝑧) ⊆ (rank‘𝑤)} → ((𝐵𝑦) ≠ ∅ ↔ (𝐵 𝑥𝐴 {𝑧𝐵 ∣ ∀𝑤𝐵 (rank‘𝑧) ⊆ (rank‘𝑤)}) ≠ ∅))
87imbi2d 339 . . 3 (𝑦 = 𝑥𝐴 {𝑧𝐵 ∣ ∀𝑤𝐵 (rank‘𝑧) ⊆ (rank‘𝑤)} → ((𝐵 ≠ ∅ → (𝐵𝑦) ≠ ∅) ↔ (𝐵 ≠ ∅ → (𝐵 𝑥𝐴 {𝑧𝐵 ∣ ∀𝑤𝐵 (rank‘𝑧) ⊆ (rank‘𝑤)}) ≠ ∅)))
95, 8ralbid 3266 . 2 (𝑦 = 𝑥𝐴 {𝑧𝐵 ∣ ∀𝑤𝐵 (rank‘𝑧) ⊆ (rank‘𝑤)} → (∀𝑥𝐴 (𝐵 ≠ ∅ → (𝐵𝑦) ≠ ∅) ↔ ∀𝑥𝐴 (𝐵 ≠ ∅ → (𝐵 𝑥𝐴 {𝑧𝐵 ∣ ∀𝑤𝐵 (rank‘𝑧) ⊆ (rank‘𝑤)}) ≠ ∅)))
10 eqid 2727 . . 3 {𝑧𝐵 ∣ ∀𝑤𝐵 (rank‘𝑧) ⊆ (rank‘𝑤)} = {𝑧𝐵 ∣ ∀𝑤𝐵 (rank‘𝑧) ⊆ (rank‘𝑤)}
11 eqid 2727 . . 3 𝑥𝐴 {𝑧𝐵 ∣ ∀𝑤𝐵 (rank‘𝑧) ⊆ (rank‘𝑤)} = 𝑥𝐴 {𝑧𝐵 ∣ ∀𝑤𝐵 (rank‘𝑧) ⊆ (rank‘𝑤)}
1210, 11cplem1 9918 . 2 𝑥𝐴 (𝐵 ≠ ∅ → (𝐵 𝑥𝐴 {𝑧𝐵 ∣ ∀𝑤𝐵 (rank‘𝑧) ⊆ (rank‘𝑤)}) ≠ ∅)
133, 9, 12ceqsexv2d 3526 1 𝑦𝑥𝐴 (𝐵 ≠ ∅ → (𝐵𝑦) ≠ ∅)
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1533  wex 1773  wcel 2098  wne 2936  wral 3057  {crab 3428  Vcvv 3471  cin 3946  wss 3947  c0 4324   ciun 4998  cfv 6551  rankcrnk 9792
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2166  ax-ext 2698  ax-rep 5287  ax-sep 5301  ax-nul 5308  ax-pow 5367  ax-pr 5431  ax-un 7744  ax-reg 9621  ax-inf2 9670
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 846  df-3or 1085  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2529  df-eu 2558  df-clab 2705  df-cleq 2719  df-clel 2805  df-nfc 2880  df-ne 2937  df-ral 3058  df-rex 3067  df-reu 3373  df-rab 3429  df-v 3473  df-sbc 3777  df-csb 3893  df-dif 3950  df-un 3952  df-in 3954  df-ss 3964  df-pss 3966  df-nul 4325  df-if 4531  df-pw 4606  df-sn 4631  df-pr 4633  df-op 4637  df-uni 4911  df-int 4952  df-iun 5000  df-iin 5001  df-br 5151  df-opab 5213  df-mpt 5234  df-tr 5268  df-id 5578  df-eprel 5584  df-po 5592  df-so 5593  df-fr 5635  df-we 5637  df-xp 5686  df-rel 5687  df-cnv 5688  df-co 5689  df-dm 5690  df-rn 5691  df-res 5692  df-ima 5693  df-pred 6308  df-ord 6375  df-on 6376  df-lim 6377  df-suc 6378  df-iota 6503  df-fun 6553  df-fn 6554  df-f 6555  df-f1 6556  df-fo 6557  df-f1o 6558  df-fv 6559  df-ov 7427  df-om 7875  df-2nd 7998  df-frecs 8291  df-wrecs 8322  df-recs 8396  df-rdg 8435  df-r1 9793  df-rank 9794
This theorem is referenced by:  cp  9920
  Copyright terms: Public domain W3C validator
OSZAR »