MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  crctisclwlk Structured version   Visualization version   GIF version

Theorem crctisclwlk 29607
Description: A circuit is a closed walk. (Contributed by AV, 17-Feb-2021.) (Proof shortened by AV, 30-Oct-2021.)
Assertion
Ref Expression
crctisclwlk (𝐹(Circuits‘𝐺)𝑃𝐹(ClWalks‘𝐺)𝑃)

Proof of Theorem crctisclwlk
StepHypRef Expression
1 crctprop 29605 . 2 (𝐹(Circuits‘𝐺)𝑃 → (𝐹(Trails‘𝐺)𝑃 ∧ (𝑃‘0) = (𝑃‘(♯‘𝐹))))
2 trliswlk 29510 . . 3 (𝐹(Trails‘𝐺)𝑃𝐹(Walks‘𝐺)𝑃)
3 isclwlk 29586 . . . 4 (𝐹(ClWalks‘𝐺)𝑃 ↔ (𝐹(Walks‘𝐺)𝑃 ∧ (𝑃‘0) = (𝑃‘(♯‘𝐹))))
43biimpri 227 . . 3 ((𝐹(Walks‘𝐺)𝑃 ∧ (𝑃‘0) = (𝑃‘(♯‘𝐹))) → 𝐹(ClWalks‘𝐺)𝑃)
52, 4sylan 579 . 2 ((𝐹(Trails‘𝐺)𝑃 ∧ (𝑃‘0) = (𝑃‘(♯‘𝐹))) → 𝐹(ClWalks‘𝐺)𝑃)
61, 5syl 17 1 (𝐹(Circuits‘𝐺)𝑃𝐹(ClWalks‘𝐺)𝑃)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1534   class class class wbr 5148  cfv 6548  0cc0 11138  chash 14321  Walkscwlks 29409  Trailsctrls 29503  ClWalkscclwlks 29583  Circuitsccrcts 29597
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1790  ax-4 1804  ax-5 1906  ax-6 1964  ax-7 2004  ax-8 2101  ax-9 2109  ax-10 2130  ax-11 2147  ax-12 2167  ax-ext 2699  ax-sep 5299  ax-nul 5306  ax-pr 5429
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 847  df-3an 1087  df-tru 1537  df-fal 1547  df-ex 1775  df-nf 1779  df-sb 2061  df-mo 2530  df-eu 2559  df-clab 2706  df-cleq 2720  df-clel 2806  df-nfc 2881  df-ne 2938  df-ral 3059  df-rex 3068  df-rab 3430  df-v 3473  df-sbc 3777  df-csb 3893  df-dif 3950  df-un 3952  df-in 3954  df-ss 3964  df-nul 4324  df-if 4530  df-sn 4630  df-pr 4632  df-op 4636  df-uni 4909  df-br 5149  df-opab 5211  df-mpt 5232  df-id 5576  df-xp 5684  df-rel 5685  df-cnv 5686  df-co 5687  df-dm 5688  df-rn 5689  df-res 5690  df-ima 5691  df-iota 6500  df-fun 6550  df-fv 6556  df-wlks 29412  df-trls 29505  df-clwlks 29584  df-crcts 29599
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator
OSZAR »