![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > curf11 | Structured version Visualization version GIF version |
Description: Value of the double evaluated curry functor. (Contributed by Mario Carneiro, 12-Jan-2017.) |
Ref | Expression |
---|---|
curfval.g | ⊢ 𝐺 = (〈𝐶, 𝐷〉 curryF 𝐹) |
curfval.a | ⊢ 𝐴 = (Base‘𝐶) |
curfval.c | ⊢ (𝜑 → 𝐶 ∈ Cat) |
curfval.d | ⊢ (𝜑 → 𝐷 ∈ Cat) |
curfval.f | ⊢ (𝜑 → 𝐹 ∈ ((𝐶 ×c 𝐷) Func 𝐸)) |
curfval.b | ⊢ 𝐵 = (Base‘𝐷) |
curf1.x | ⊢ (𝜑 → 𝑋 ∈ 𝐴) |
curf1.k | ⊢ 𝐾 = ((1st ‘𝐺)‘𝑋) |
curf11.y | ⊢ (𝜑 → 𝑌 ∈ 𝐵) |
Ref | Expression |
---|---|
curf11 | ⊢ (𝜑 → ((1st ‘𝐾)‘𝑌) = (𝑋(1st ‘𝐹)𝑌)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | curfval.g | . . . 4 ⊢ 𝐺 = (〈𝐶, 𝐷〉 curryF 𝐹) | |
2 | curfval.a | . . . 4 ⊢ 𝐴 = (Base‘𝐶) | |
3 | curfval.c | . . . 4 ⊢ (𝜑 → 𝐶 ∈ Cat) | |
4 | curfval.d | . . . 4 ⊢ (𝜑 → 𝐷 ∈ Cat) | |
5 | curfval.f | . . . 4 ⊢ (𝜑 → 𝐹 ∈ ((𝐶 ×c 𝐷) Func 𝐸)) | |
6 | curfval.b | . . . 4 ⊢ 𝐵 = (Base‘𝐷) | |
7 | curf1.x | . . . 4 ⊢ (𝜑 → 𝑋 ∈ 𝐴) | |
8 | curf1.k | . . . 4 ⊢ 𝐾 = ((1st ‘𝐺)‘𝑋) | |
9 | eqid 2725 | . . . 4 ⊢ (Hom ‘𝐷) = (Hom ‘𝐷) | |
10 | eqid 2725 | . . . 4 ⊢ (Id‘𝐶) = (Id‘𝐶) | |
11 | 1, 2, 3, 4, 5, 6, 7, 8, 9, 10 | curf1 18214 | . . 3 ⊢ (𝜑 → 𝐾 = 〈(𝑦 ∈ 𝐵 ↦ (𝑋(1st ‘𝐹)𝑦)), (𝑦 ∈ 𝐵, 𝑧 ∈ 𝐵 ↦ (𝑔 ∈ (𝑦(Hom ‘𝐷)𝑧) ↦ (((Id‘𝐶)‘𝑋)(〈𝑋, 𝑦〉(2nd ‘𝐹)〈𝑋, 𝑧〉)𝑔)))〉) |
12 | 6 | fvexi 6905 | . . . . 5 ⊢ 𝐵 ∈ V |
13 | 12 | mptex 7230 | . . . 4 ⊢ (𝑦 ∈ 𝐵 ↦ (𝑋(1st ‘𝐹)𝑦)) ∈ V |
14 | 12, 12 | mpoex 8080 | . . . 4 ⊢ (𝑦 ∈ 𝐵, 𝑧 ∈ 𝐵 ↦ (𝑔 ∈ (𝑦(Hom ‘𝐷)𝑧) ↦ (((Id‘𝐶)‘𝑋)(〈𝑋, 𝑦〉(2nd ‘𝐹)〈𝑋, 𝑧〉)𝑔))) ∈ V |
15 | 13, 14 | op1std 7999 | . . 3 ⊢ (𝐾 = 〈(𝑦 ∈ 𝐵 ↦ (𝑋(1st ‘𝐹)𝑦)), (𝑦 ∈ 𝐵, 𝑧 ∈ 𝐵 ↦ (𝑔 ∈ (𝑦(Hom ‘𝐷)𝑧) ↦ (((Id‘𝐶)‘𝑋)(〈𝑋, 𝑦〉(2nd ‘𝐹)〈𝑋, 𝑧〉)𝑔)))〉 → (1st ‘𝐾) = (𝑦 ∈ 𝐵 ↦ (𝑋(1st ‘𝐹)𝑦))) |
16 | 11, 15 | syl 17 | . 2 ⊢ (𝜑 → (1st ‘𝐾) = (𝑦 ∈ 𝐵 ↦ (𝑋(1st ‘𝐹)𝑦))) |
17 | simpr 483 | . . 3 ⊢ ((𝜑 ∧ 𝑦 = 𝑌) → 𝑦 = 𝑌) | |
18 | 17 | oveq2d 7431 | . 2 ⊢ ((𝜑 ∧ 𝑦 = 𝑌) → (𝑋(1st ‘𝐹)𝑦) = (𝑋(1st ‘𝐹)𝑌)) |
19 | curf11.y | . 2 ⊢ (𝜑 → 𝑌 ∈ 𝐵) | |
20 | ovexd 7450 | . 2 ⊢ (𝜑 → (𝑋(1st ‘𝐹)𝑌) ∈ V) | |
21 | 16, 18, 19, 20 | fvmptd 7006 | 1 ⊢ (𝜑 → ((1st ‘𝐾)‘𝑌) = (𝑋(1st ‘𝐹)𝑌)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 394 = wceq 1533 ∈ wcel 2098 Vcvv 3463 〈cop 4630 ↦ cmpt 5226 ‘cfv 6542 (class class class)co 7415 ∈ cmpo 7417 1st c1st 7987 2nd c2nd 7988 Basecbs 17177 Hom chom 17241 Catccat 17641 Idccid 17642 Func cfunc 17837 ×c cxpc 18156 curryF ccurf 18199 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2166 ax-ext 2696 ax-rep 5280 ax-sep 5294 ax-nul 5301 ax-pow 5359 ax-pr 5423 ax-un 7737 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 846 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2528 df-eu 2557 df-clab 2703 df-cleq 2717 df-clel 2802 df-nfc 2877 df-ne 2931 df-ral 3052 df-rex 3061 df-reu 3365 df-rab 3420 df-v 3465 df-sbc 3770 df-csb 3886 df-dif 3943 df-un 3945 df-in 3947 df-ss 3957 df-nul 4319 df-if 4525 df-pw 4600 df-sn 4625 df-pr 4627 df-op 4631 df-uni 4904 df-iun 4993 df-br 5144 df-opab 5206 df-mpt 5227 df-id 5570 df-xp 5678 df-rel 5679 df-cnv 5680 df-co 5681 df-dm 5682 df-rn 5683 df-res 5684 df-ima 5685 df-iota 6494 df-fun 6544 df-fn 6545 df-f 6546 df-f1 6547 df-fo 6548 df-f1o 6549 df-fv 6550 df-ov 7418 df-oprab 7419 df-mpo 7420 df-1st 7989 df-2nd 7990 df-curf 18203 |
This theorem is referenced by: curf1cl 18217 curf2cl 18220 curfcl 18221 uncfcurf 18228 diag11 18232 yon11 18253 |
Copyright terms: Public domain | W3C validator |